
A Two-Pronged Attack on the Dragon of Intractability

Stephen Gilmour and Mark Dras
Department of Computing

Macquarie University
{gilmour,madras}@ics.mq.edu.au

Abstract

One approach to tractably finding a solution to an
NP-complete optimisation problem is heuristic, where
the solution is inexact but quickly found; another ap-
proach is to reduce the problem in such a way that the
reduction has the same solution as the original but is
simpler, and then to solve the reduction, noting that
this reduction is still NP-complete. It is possible to
combine the two approaches with the goal of taking
advantage of both the speed of the heuristic approach
and the exactness of the reduction, but this is typi-
cally done only in a simple way. The aim of this paper
is to begin exploring the range of ways in which these
two classes of approach can be combined, using vertex
cover as a problem instance.
We take as our reduction method the one used under
parameterized complexity, where the problem is re-
duced through the application of kernelisation rules.
For our heuristic we use Ant Colony Optimisation
(ACO), where a set of ‘ants’ chooses a solution via
distributed interaction; the search space ‘terrain’ that
these ants traverse can be either flat or, as in a re-
cent proposal, preconfigured by templates. In this pa-
per, we investigate kernelisation rules as a notion of
template that is richer than has previously been pro-
posed, show that under three different models of com-
bination the approach outperforms standard ACO for
vertex cover, and analyse the solutions generated by
the combination models with respect to each other.
Keywords: vertex cover, parameterized complexity,
Ant Colony Optimisation

1 Introduction

With combinatorial optimisation problems (COPs),
where determining an exact solution is intractable,
there are a number of classes of approach to obtain-
ing some solution. Approximation methods involve
the design of some polynomial-time algorithm that
will give an answer guaranteed to lie within a fixed
bound of the optimal solution; for example, for the
NP-complete vertex cover problem, the simple algo-
rithm which randomly selects and deletes edges while
adding the two endpoints to the cover has a solution
at most twice the optimal. Heuristic methods provide
a way of navigating the search space that is faster
than the enumeration required for the determining of
the optimum, but it has no guarantees regarding the

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at Australasian Computer Science Conference
(ACSC2005), Newcastle, Australia. Conferences in Research
and Practice in Information Technology, Vol. 38. Vladimir
Estivill-Castro, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

goodness of the solution. Reduction methods consti-
tute a third approach, where the problem is reduced
in such a way that the reduction is smaller but whose
solution can lead to the construction of the exact so-
lution for the original; so even though this reduction
will still be NP-complete, determining the solution
will take less time.
Combinations of these approaches aim to take advan-
tage of the best characteristics of each. Some are
straightforward and quite commonly used: for ex-
ample, running a heuristic method and an approxi-
mation algorithm in parallel, with the former being
more likely through its search space navigation to find
the optimal solution, and with the latter providing a
bound on the result. In this paper we are interested
in how the heuristic and reduction methods might be
advantageously combined. Concretely, we take Ant
Colony Optimisation as our heuristic method, and the
parameterized complexity approach for our reduction
method.
Ant Colony Optimisation (ACO) is a meta-heuristic
for solving COPs (Dorigo, Caro & Gambardella
1999). Ant Colony Optimisation algorithms are bio-
logically inspired and distributed in nature and have
been found to be well suited to solving difficult op-
timisation problems, particularly dynamic optimisa-
tion problems (Bonabeau, Dorigo & Theraulaz 1999).
Problems that ACO has been applied to include the
Travelling Salesman Problem (Dorigo & Gambardella
1997), the Quadratic Assignment Problem (Maniezzo
& Colorni 1999), communication networks (Caro &
Dorigo 1998), and vehical routing (Gambardella, Tail-
lard & Agazzi 1999). A recent development in ant
algorithms—that is, any algorithm that takes its bi-
ological inspiration from ants—has been templates
(Bonabeau et al. 1999). Templates are a mechanism
for preconfiguring the search space of COPs so that
ant algorithms are able to find solutions more quickly.
Parameterized complexity (Downey, Fellows & Stege
1997, Fellows 2002, Downey 2003) is a well estab-
lished field that involves finding tractable algorithms
for problems that have traditionally been classified
as NP-complete and therefore intractable. Kerneliza-
tion is a tool within the parameterized complexity
framework for reducing COPs by a set of rules to
a ‘problem kernel’. This problem kernel is smaller
than the original problem but is still NP-complete,
with the solution to it allowing the optimal solution
to the original problem to be reconstructed. Parame-
terized complexity has been applied to a number of
problems, including Maximum Satisfiability (Bansal
& Raman 1999), the Vertex Cover Problem (Stege &
Fellows 1999), the Planar Dominating Set Problem
(Alber, Fellows & Niedermeier 2002), and computa-
tional biology (Bodlaender, Downey, Fellows, Hallett
& Wareham 1995).
A kernelization rule may for example have the form

If the problem has a component part X of a partic-
ular form, then X can be removed and the current
optimal solution updated. This direction to remove
a component part to simplify the problem could be
interpreted as a direction to a heuristic method re-
garding areas of the search space to focus on or to
ignore. This type of kernelization rule, then, could
be adapted to derive a type of template. The rela-
tionship between templates and kernelization is the
key idea of this paper, and will be discussed further
on. This paper discusses three ACO algorithms we
have implemented that use kernelization as a kind of
template for the vertex cover problem. Formally, the
vertex cover problem is defined as:

Given an unweighted graph G =< V,E >,
the vertex cover problem is to find a subset
of vertices V ′ from the vertex set V such
that every edge E in the graph is covered by
one of the vertices in V ′. That is, we want to
find the minimum subset V ′ ⊆ V , such that
for each (x, y) ∈ E either x or y belongs to
V ′.

Section 2 reviews ant colony optimisation and tem-
plates, and presents a standard ACO algorithm for
the vertex cover problem. Section 3 contains a dis-
cussion of parameterized complexity and looks at a
kernelization algorithm for the vertex cover problem.
Section 4 details the three algorithms we have pro-
duced for using kernelization as an ACO template,
section 5 contains an evaluation and discussion of
these three algorithms, and section 6 concludes this
paper.

2 Ant Colony Optimisation

Ant colony optimisation (ACO) is a biologically in-
spired meta-heuristic for solving difficult combinato-
rial optimisation problems (COPs). “Ants are so-
cial insects, that is, insects that live in colonies and
whose behaviour is directed more to the survival of
the colony as a whole than to that of a single indi-
vidual component of the colony” (Dorigo et al. 1999).
Ant colony optimisation is inspired by real ants be-
cause it attempts to solve COPs by using distrib-
uted, social agents that are directed more to the
goals of the colony than to the individual. However,
this meta-heuristic does not seek to create a system
that is a perfect replication of an ant colony, but to
be a biologically inspired “engineering approach to
the design and implementation of software systems”
(Dorigo et al. 1999). The ACO meta-heuristic uses
three different mechanisms that are used by real ant
colonies to find the shortest path from their nest to
food sources. These three mechanisms are stigmergy,
autocatalysis, and emergent behaviour.
Section 2.1 will look at how ACO uses stigmergy, au-
tocatalysis, and emergent behaviour to solve COPs,
section 2.2 will present an ACO algorithm from Shyu,
Yin, Lin & Hsiao (2001) for solving the vertex cover
problem from which our proposed algorithms are de-
rived, and section 2.3 will discuss templates, a new
direction in ant algorithms where some structure is
given to the search space to allow better solutions to
be found.

2.1 Biological Inspiration

Real ants do not communicate directly to each other
but communicate indirectly through the laying of
pheromone. Pheromone can be recognized as both

belonging to a specific ant and to a specific colony,
and allows ants to leave very simple messages to
other ants such as the direction to food or a warn-
ing regarding the approach of a predator. This in-
direct communication mediated by pheromone laying
is called stigmergy. In ACO, we use stigmergy by
having ants communicate via the modification of the
problem representation through the laying of “digi-
tal pheromone”. As artificial ants construct solutions
to the problem they are working on, they lay digi-
tal pheromone indicating the goodness of the solu-
tion along the path of the solution they have found
(in real ants, the goodness of a solution is implicitly
evaluated whereas in many ACO applications it is
explicitly evaluated). Then when other artificial ants
come across this pheromone, they are probabilisti-
cally more likely to follow it than to explore elsewhere
in the problem. Digital pheromone is usually repre-
sented by a numerical value at each distinct location
in the problem representation and can only be placed
locally and detected locally.
As the following of pheromone is probabilistic, ants
will occasionally try other parts of the search space
close to the most successful solutions in the hope of
finding better solutions. If successful, a quantity of
digital pheromone will be laid to indicate that an even
better solution has been found. Since the pheromone
only directs the search towards other successful solu-
tions, the pheromone merely guides other ants to a
part of the search space that has proven successful.
This process is described as “characterized by a posi-
tive feedback loop, where the probability with which
an ant chooses a path increases with the number of
ants that previously chose the same path” (Dorigo,
Maniezzo & Colorni 1991). In other words, ACO
utilizes autocatalysis: the amount of pheromone in
a location dictates probabilistically how many ants
will visit that location which in turn will cause more
pheromone to be deposited in that location, and so
on.
Real ants are blind and have virtually no mem-
ory. In a real ant colony, the ants do not plan to
find the shortest route from their nest to a food
source, but this behaviour emerges from ants drop-
ping pheromone as they walk between food and
the nest and other ants being attracted by that
pheromone and being partially directed by it. It
is only through emergent behaviour (behaviour pro-
duced implicitly from the interactions of the com-
ponents of the system) from interacting ants in the
colony that the most direct route from the nest to
food is obtainable. Although artificial ants are not
simple in the same ways as real ants, they are cer-
tainly less complex computationally than would be
expected considering the quality of the solutions they
produce. Each ant individually is only capable of gen-
erating a solution to the problem of highly variable
quality and very rarely is anywhere close to optimal.
However, through autocatalysis and stigmergy, an ar-
tificial ant colony is able to produce a near-optimal
(if not optimal) solution to the problem it is being
applied to.

2.2 ACO for the Vertex Cover Problem

In the vertex cover problem, we need to find a subset
of nodes V ′ from the graph G such that V ′ covers all
the edges in G, under the definition of section 1. This
subset of nodes is found by each ant taking a walk on
the graph. Every node that an ant visits goes into the
vertex cover that that ant is constructing. Unfortu-
nately this subset of nodes is not guaranteed to form
a path or a tree on the underlying graph. Therefore,

we must “construct a complete graph Gc = (V, Ec)
involving the vertex set V of G such that every pair
of vertices are connected by an edge in Ec. As a re-
sult if we apply ACO on Gc, the ants can construct
tours corresponding to any possible variations of V ′”
(Shyu et al. 2001). This complete graph allows our
ants to pick any subset of nodes from the graph to
form a vertex cover by taking a walk on the graph
without the need for backtracking. However, in order
to preserve the original graph, the following connec-
tivity function needs to be defined for each edge (r, j)
and each ant k:

ψk(r, j) =
{

1, if (r, j) ∈ E;
0, if (r, j) ∈ Ec − E (1)

This connectivity function also allows ants to evaluate
a preference for putting a node into the vertex cover it
is constructing. When a node j is added to the vertex
cover by ant k, the connectivity function ψk for each
of its connected edges (r, j), for all r, is set to 0. The
greater the number of edges a node has with ψk = 1,
the more strongly preferred it is. When there are no
edges left with ψk = 1, this means that all edges have
been covered and therefore a vertex cover has been
constructed for the original graph. Whenever this
process is complete, all connectivity values need to
be reset according to equation (1) so that the process
can begin again.
Ants use a stochastic state transition rule to pick
the next node to visit and place in the vertex cover.
This rule needs to be stochastic to prevent stagnation
occurring in the constructed solutions—stagnation
is when all the ants are continally constructing the
same solution and not exploring for better solutions.
Therefore Shyu et al. (2001) have developed the fol-
lowing rule that describes the probability of an ant k
visiting node j and placing it in the vertex cover:

pk
j =

1, if q < q0 and j = arg max
r∈Ak

{τrη
β
rk};

0, if q < q0 and j 6= arg max
r∈Ak

{τrη
β
rk};

τjηβ
jk∑

r∈Ak

τrη
β
rk

, if q ≥ q0,

(2)
where Ak denotes the set of accessible vertices for ant
k,
ηjk is the heuristic goodness of node j,
τj is the amount of pheromone on node j,
β is a rational number greater than zero,
q is a random number from the open interval (0, 1)
and q0 is a specified threshold.
The probability of ant k visiting node j is depen-
dent on both the heuristic goodness of node j and
the amount of pheromone on node j. This is so that
initially the heuristic can guide the search but as bet-
ter solutions are found through the stochastic element
of the search, pheromone starts to drive the search.
The relationship between these two measures is bal-
anced by β which determines when this transition oc-
curs. The heuristic goodness of a node is calculated
according to the number of edges connected to j with
ψk(r, j) = 1, for all r, and the weight of node j. That
is:

ηjk =

∑

(r,j)∈Ec

ψk(r, j)

w(j)
.

Notice that this heuristic is dynamic. Because each
time we place a node j in the vertex cover we set for
all r, ψk(r, j) = 0, the heuristic goodness for all ad-
jacent nodes r changes. This is different from other
applications of ACO where the heuristic goodness of
choosing a node or edge (depending on the applica-
tion) is static and never changes. In the vertex cover
problem, we are interested in constructing a subset
of nodes that covers all edges, and therefore we place
pheromone on nodes rather than edges. There are two
pheromone update rules used within this algorithm:
the Global Update Rule; and the Local Update Rule.
The global update rule occurs once at the end of each
cycle. Pheromone is placed on the nodes in the vertex
cover of the currently best solution found by any ant.
The local update rule is performed by each ant whilst
it is constructing solutions to the problem. The lo-
cal update rule “decreases the pheromone intensity
on the vertex just visited by an ant and makes the
selected vertices less attractive to other ants” (Shyu
et al. 2001). This is to prevent stagnation from oc-
curring in solutions.
The global update rule is:

τi =
{

(1− ρ)τi + τ0ρ∆τi, if i ∈ V ′
c

(1− ρ)τi, otherwise (3)

where ∆τi = 1∑

j∈V ′c

w(j)
,

V ′
c are the nodes in the current best solution.

That is, for all nodes, the pheromone already present
is evaporated according to the constant 1 − ρ. Then
the nodes in the current best solution have added
to them the inverse of the sum of the weights of
the nodes in the vertex cover ∆τi multiplied by the
amount of pheromone initially placed on every node
τ0 and the evaporation constant ρ. To calculate the
amount of pheromone initially placed on every node,
Shyu et al. (2001) use:

τ0 =
|V | ∗ (|V | − |V ′

c |)∑

j∈V ′c

w(j)

The local update rule that is applied by all ants on
the solution they are constructing as they construct
it is:

τi = (1− ϕ)τi + ϕτ0

Here ϕ is the evaporation rate. Both evaporation con-
stants (ϕ, ρ ∈ (0, 1)) simulate the natural evaporation
rate of pheromone previously laid on nodes to ensure
that positive feedback does not explode and stop bet-
ter solutions from being found.

2.3 Ants and Templates

Ant algorithms have been found to be quite promis-
ing: for some combinatorial optimisation problems
they have reached world class performance (Dorigo
et al. 1999). A new area of research is giving ant al-
gorithms a template. A template is a pattern used
to organise activities. It is said that the ants “self-
organise along a template” (Bonabeau et al. 1999).
In other words, ants still develop a solution using
stigmergy and autocatalysis, but the template guides
them so that the final solution is more predictable or
more easily found.

As an example of the use of templates, we take a
problem in graph partitioning, that involves dividing
a graph into c clusters of approximately equal size
while minimizing the number of connections between
them. This problem is non-parametric and therefore
the number of clusters that may form is always un-
known. For this problem, the template is a grid that
covers the environment (graph). The grid contains for
each possible location the probability for items to be
placed in that particular location in the graph. One
possible template for this problem could have high
probability in the corners of the graph and low prob-
ability in the centre. This means that the ants are
probabilistically more likely to drop items in the four
corners of the graph. This template provides para-
meterisability and predictability to this problem by
predefining the number of clusters to be around four.
It works very well when the graph does naturally di-
vide into four clusters, and works reasonably well if
the number of clusters is close to four (so if it is three,
it should just form three clusters in three corners of
the graph).
Templates provide a mechanism for reducing prob-
lems to make them easier to compute (it is easier to
divide a graph into approximately four clusters than
it is to divide it into an unknown number of clusters)
and provides predictability in solutions (Bonabeau
et al. 1999). However, research into templates is
still greatly under-developed. Thus far, templates
have only been applied to graph partitioning and data
analysis problems (Bonabeau et al. 1999), and no at-
tempt has been made to apply them to more promi-
nent NP-complete problems such as the vertex cover
problem.

3 Parameterized Complexity

In this section, we outline the notion of Parameterized
Complexity as presented in Fellows (2002).
Consider two problems, the vertex cover problem and
the dominating set problem. Formally these problems
are defined as:
VERTEX COVER
Input: A graph G = (V, E) and a positive integer k.
Question: Does G have a vertex cover of size at most
k? (A vertex cover is a set of vertices V ′ ⊆ V such
that for every edge uv ∈ E, u ∈ V ′ or v ∈ V ′ (or
both).)
DOMINATING SET
Input: A graph G = (V, E) and a positive integer k.
Question: Does G have a dominating set of size at
most k? (A dominating set is a set of vertices V ′ ⊆ V
such that for all u ∈ V : u ∈ N [v] for some v ∈ V ′)
Both of these problems are NP-complete. The best
known algorithm for the vertex cover problem runs in
time O(1.271k +kn) (Chen, Kanj & Jia 1999) (an im-
provement over one of the earlier algorithms for this
problem that ran in O(2kn)) yet the best known algo-
rithm for the dominating set problem is a brute force
algorithm that runs in time O(nk+1) (Fellows 2002).
As demonstrated by the frequently referenced table
1 (Downey et al. 1997, Fellows 2002, Downey 2003),
although both problems are exponential, clearly the
vertex cover algorithm is tractable (in fact it is
tractable for all n if k ≤ 60) yet the dominating set
algorithm is not. But both problems are considered
NP-complete under classical complexity theory and
therefore intractable.
Parameterized complexity is not a replacement for
traditional complexity theory but works to solve some
of the problems many complexity theorists and ap-

n = 50 n = 100 n = 150
k = 2 625 2, 500 5, 625
k = 3 15, 625 125, 000 421, 875
k = 5 390, 625 6, 250, 000 31, 640, 625
k = 10 1.9× 1012 9.8× 1014 3.7× 1016

k = 20 1.8× 1026 9.5× 1031 2.1× 1035

Table 1: The ratio nk+1

2kn
for various values of n and k.

plied computing practitioners are having with com-
plexity theory and algorithm design such as the one
just demonstrated. Parameterized complexity has
two aspects that fulfill these aims: A framework for
complexity analysis; and a toolkit of methods for al-
gorithm design.
Section 3.1 discusses the parameterized complexity
framework and how it improves traditional complex-
ity theory; section 3.2 looks at a particular method
for coping with intractability called kernelization; and
section 3.3 contains the details of a kernelization al-
gorithm for the vertex cover problem, some parts of
which we will use in the algorithms we present in sec-
tion 4.

3.1 Parameterized Complexity Framework

In order to apply the parameterized complexity
framework to problems, they need to be defined in
terms of a parameterized language. For example, the
definitions of the vertex cover problem and dominat-
ing set problem are defined using a parameterized lan-
guage in section 3 where the parameter is k. Formally,
a parameterized language is defined as (Fellows 2002):
DEFINITION 1: A parameterized language L is a
subset L ⊆ ∑∗×∑∗. If L is a parameterized lan-
guage and (x, k) ∈ L then we will refer to x as the
main part, and refer to k as the parameter.
A parameter does not need to be a numerical value
such as in the vertex cover problem above. A parame-
ter can also represent “an aggregate of various parts
or structural properties of the input” (Fellows 2002).
The function of the parameter is to act as a natu-
rally occurring bound on the problem. Many con-
crete problems in practice are governed by parame-
ters of all kinds that bound the problem and “if we
can design algorithms with running times like 2kn for
these problems, then we may have something really
useful” (Fellows 2002). Such algorithms are called
fixed-parameter tractable algorithms.
Within parameterized complexity, we seek fixed-
parameter tractable (FPT) algorithms. FPT is in fact
a complexity class in parameterized complexity that
is somewhat analogous to P in traditional complexity.
A problem L is said to be in FPT if the complexity of
the best known algorithm for it can be shown to be
either multiplicatively or additively fixed-parameter
tractable (Fellows 2002):
DEFINITION 2: A parameterized language L is mul-
tiplicatively fixed-parameter tractable if it can be de-
termined in time f(k)q(n) whether (x, k) ∈ L, where
|x| = n, q(n) is a polynomial in n, and f is a function
(unrestricted).
DEFINITION 3: A parameterized language L is addi-
tively fixed-parameter tractable if it can be determined
in time f(k)+q(n) whether (x, k) ∈ L, where |x| = n,
q(n) is a polynomial in n, and f is a function (unre-
stricted).
Clearly the best known algorithm for the dominating

set problem which runs in time O(nk+1) is not in
FPT whereas the best known algorithm for the vertex
cover problem which runs in time O(1.271k + kn) is
additively fixed-parameter tractable and is therefore
in the complexity class FPT.
However, before discussing the practical application
of parameterized complexity, a definition for a para-
metric transformation needs to be made. Paramet-
ric transformations show us which complexity class a
problem belongs to by showing how the problems in
each class relate to each other. Formally a parametric
transformation is defined as (Fellows 2002):
DEFINITION 4: A parametric transformation from
a parameterized language L to a parameterized lan-
guage L′ is an algorithm that computes from input
consisting of a pair (x, k), a pair (x′, k′) such that:

1. (x, k) ∈ L if and only if (x′, k′) ∈ L′;

2. k′ = g(k) is a function only of k;

3. the computation is accomplished in time f(k)nα,
where n = |x|, α is a constant independent of
both n and k, and f is an arbitrary function.

The essential property of parametric transformations
is that if L transforms to L′ and L′ ∈ FPT , then
L ∈ FPT (Downey et al. 1997).

3.2 FPT Through Kernelization

Parameterized complexity provides a new framework
that is a potential means for coping with classical in-
tractability because it takes into consideration nat-
urally occurring parameters that can bound prob-
lems. Within parameterized complexity, we seek FPT
algorithms which, although often NP-complete, are
tractable for most input. The framework also con-
tains tools for designing algorithms that are in FPT.
One such tool is kernelization. Kernelization is a form
of pre-processing that can be done on a problem in
polynomial time that reduces a problem so that often
even a brute force search is tractable on the result-
ing kernel. However, although kernelization makes a
problem easier to process by reducing it to its problem
kernel, it doesn’t lose any necessary information to
finding an optimal solution. Kernelization is a prac-
tical tool for designing FPT algorithms. In fact, ker-
nelization is such an important tool for developing
FPT algorithms that “a parameterized language L is
fixed-parameter tractable if and only if it is kerneliz-
able” (Fellows 2002). This is true to such an extent
that the following formal definition of kernelization is
an equivalent definition of FPT as well (Fellows 2002):
DEFINITION 6: A parameterized language L is ker-
nelizable if there is a parametric transformation of L
to itself, and a function h (unrestricted) that satisfies:

1. the running time of the transformation of (x, k)
into (x′, k′), where |x| = n, is bounded by
a polynomial q(n, k) (so that in fact this is a
polynomial-time transformation of L to itself,
considered classically, although with the addi-
tional structure of a parametric reduction);

2. k′ ≤ k;

3. |x′| ≤ h(k), where h is an arbitrary function.

Kernelization was originally a pre-processing step
that occurred before using another algorithm (such
as using bounded search trees). However, this is
no longer true. Some algorithms do still use ker-
nelization as merely a pre-processing stage (such as

(Niedermeier & Rossmanith 1999) for the vertex cover
problem) whereas other algorithms apply kerneliza-
tion after every round of the algorithm (such as
(Downey et al. 1997) also for the vertex cover prob-
lem). Regardless, kernelization has proved to be a
powerful tool for developing FPT algorithms for many
NP-complete problems.

3.3 Kernelization for the Vertex Cover Prob-
lem

In this section we look at the kernelization rules for
a particular algorithm for the vertex cover problem;
we use a subset of these later in our own approach.
The algorithm these kernelization rules come from is
detailed in Downey et al. (1997) and comprises two
stages. The first stage reduces the problem to its
problem kernel or gives the answer “no”. The second
stage uses bounded search trees to get a solution to
the problem. However, the first stage is reapplied to
the graph after every step within the second stage.
This algorithm does not use kernelization as merely a
pre-processing step but continually reapplies it to the
graph as a part of the bounded search tree algorithm.
We will only look at the first stage of this algorithm
in detail.
The following rules are applied to a graph G until no
further applications are possible. All these rules are
taken from (Downey et al. 1997).

(0): If G has a vertex v of degree greater than k, then
replace (G, k) with (G− v, k − 1).

(1): If G has two nonadjacent vertices u, v such that
|N(u)∪N(v)| > k, then replace (G, k) with (G+
uv, k).

(2): If G has adjacent vertices u and v such that
N(v) ⊆ N [u], then replace (G, k) with (G−u, k−
1).

(3): If G has a pendant edge uv with u having degree
1, then replace (G, k) with (G− {u, v}, k − 1).

(4): If G has a vertex x of degree 2, with neighbours
a and b, and none of the above cases applies
(and thus a and b are not adjacent), then replace
(G, k) with (G′, k) where G′ is obtained from G
by:

• Deleting the vertex x

• Adding the edge ab

• Adding all possible edges between {a, b} and
N(a) ∪N(b).

(5): If G has a vertex x of degree 3, with neighbours
a, b, c, and none of the above cases applies, then
replace (G, k) with (G′, k) according to one of
the following cases depending on the number of
edges between a, b and c.

(5.1): There are no edges between the vertices a, b,
c. In this case G′ is obtained from G by:

• Deleting vertex x from G.
• Adding edges from c to all the vertices in

N(a).
• Adding edges from a to all the vertices in

N(b).
• Adding edges from b to all the vertices in

N(c).
• Adding edges ab and bc.

(5.2): There is exactly one edge in G′ between the
vertices a, b, c which we assume to be the edge
ab. In this case G′ is obtained from G by

• Deleting vertex x from G.
• Adding edges from c to all the vertices in

N(a) ∪N(b).
• Adding edges from a to all the vertices in

N(c).
• Adding edges from b to all the vertices in

N(c).
• Adding edge bc.
• Adding edge ac.

The problem kernel found from these kernelization
rules is an instance of “(G′, k′) where |G′| ≤ k2 and
k′ ≤ k such that G′ has a vertex cover of size k′ if
and only if G has a vertex cover of size k” (Downey
et al. 1997). These rules have the effect of removing
all nodes of degree three or less from the graph. The
job of the bounded search tree algorithm in the sec-
ond phase deals with the nodes of degree greater than
three. Within phase two, if a node v is of degree six
or greater, then two children are placed within the
search tree. The first child has v placed in the vertex
cover and the parameter reduced by 1. The second
child has N(v) placed in the vertex cover and the pa-
rameter reduced by the degree of v. This rule deals
with all nodes of degree six or greater, and since ker-
nelization (phase one) is reapplied to the graph after
each step of branching, this just leaves nodes of size
four and five to deal with. The bounded search tree
algorithm deals with these nodes using four branch-
ing rules that are fairly complex and are discussed in
Downey et al. (1997).
It can be shown from rule (0) alone that the kerneliza-
tion rules detailed in this paper perform a polynomial
time parametric transformation of vertex cover to it-
self, so that the resultant graph has a size bounded
by a function of the parameter k. In other words,
these rules demonstrate that vertex cover is indeed in
FPT according to definition 6. Further, if the num-
ber of vertices in G′ is more than k2 then we can
conclude that there is no vertex cover of size k for
graph G. However, if |G′| ≤ k2 and k′ ≤ k and no
solution has been found, then we move onto the sec-
ond phase which involves exhaustively answering the
question for (G′, k′) whilst simultaneously reapplying
kernelization after each branching step.
As already discussed in section 3.2, kernelization was
traditionally just a pre-processing step that preceded
another algorithm. Niedermeier & Rossmanith (1999)
discuss a different parameterized complexity algo-
rithm for the vertex cover problem that performs
slightly better than Downey et al. (1997) but uses
kernelization as a pre-processing step only. Whereas
in Downey et al. (1997) the kernelization rules deal
with nodes of degree one, two, and three, this al-
gorithm uses “the more ‘classical approach’ where
the search tree deals also with vertices of degree 2
and 3 and reduction to problem kernel is only ap-
plied once as a pre-processing phase” (Niedermeier &
Rossmanith 1999). This algorithm improves the com-
plexity by Downey et al. (1997) of O(kn+1.31951kk2)
with an upper bound of O(kn + 1.29175kk2). How-
ever, since this algorithm contains just one kerneliza-
tion rule (rule (3) from above), we decided to look at
the more interesting algorithm by Downey et al.

4 Combination Algorithms

In section 2.3 we described the use of a template in
graph partitioning. The template there effectively as-
signs prior probabilities through pheromone deposits:
this is done in a fairly simplistic manner by consid-
ering a grid to be superimposed over the graph, and
the pheromone deposited according to this grid: there
is no consideration of the structure of the graph it-
self. Kernelization rules, as enumerated in section 3.3,
do precisely that: they identify those vertices in the
graph where components of the vertex cover can be
determined with certainty. Thus these kernelization
rules can act as a template on the graph itself, rather
than via a grid superimposed on the graph.
We have identified three general strategies for imple-
menting ACO that makes use of kernelization tech-
niques as a template for the vertex cover problem.
The three strategies are:

1. Integrate kernelization into the ant state transi-
tion rule;

2. Perform kernelization before running ACO, plac-
ing pheromone on the included nodes;

3. Perform kernelization after each cycle of the
ACO algorithm, placing pheromone on the in-
cluded nodes.

We have implemented all three strategies and run
tests to see how they perform compared to each other
and compared to the standard ACO algorithm. How-
ever, in order to integrate kernelization into ACO, we
needed to find a way to perform kernelization in a dis-
tributed manner. Although some kernelization rules
for the vertex cover problem do naturally lend them-
selves to a multi-agent implementation, some of them
do not. For example, in rule (4) from section 3.3, new
edges are required to be added, which is not straight-
forward to do in a distributed manner. Section 4.1
discusses the kernelization rules we used for all three
algorithms. Section 4.2 looks at an implementation of
the first strategy that is called TransKernelized Ver-
tex Cover ACO. Section 4.3 looks at an implemen-
tation of the second strategy that is called PreKer-
nelized Vertex Cover ACO and section 4.4 looks at
an implementation of the third strategy that is called
CycleKernelized Vertex Cover ACO. Section 5 then
compares these three algorithms with an implemen-
tation of a standard algorithm as described in sec-
tion 2.2.

4.1 Kernelization Rules

Throughout the literature concerning kernelization
for the vertex cover problem, many different sets of
rules have been proposed. Some rules have been in-
cluded in all algorithms such as the original kernel-
ization rule from Buss’ (Buss & Goldsmith 1993) al-
gorithm (see rule 1 below). Other rules have been
proposed and then replaced later by another rule that
perhaps combined a few different rules into a single,
more complex rule. (Stege & Fellows 1999) contains a
literature review of kernelization rules that ends with
a new algorithm that has not since been superseded.
In order to integrate kernelization into ACO, we need
to use rules that can be implemented in a distributed
system. Therefore, we have identified four rules from
many different algorithms that all lend themselves to
a multi-agent implementation and can validly work
together to kernelize a graph into its problem kernel.
The four rules are (Stege & Fellows 1999, Downey
et al. 1997):

1. If G has a vertex v of degree greater than k, then
replace (G, k) with (G− v, k − 1) and place v in
the vertex cover;

2. If G has adjacent vertices u and v such that
N(v) ⊆ N [v], then replace (G, k) with (G−u, k−
1) and place u in the vertex cover;

3. If G has a pendant edge uv with u having degree
1, then replace (G, k) with (G−{u, v}, k−1) and
place v in the vertex cover;

4. If G has a vertex u of degree 2, with neighbours
y and z, and y and z are adjacent, then replace
(G, k) with (G−{u, y, z}, k− 2) and place y and
z in the vertex cover.

These four kernelization rules are justified as follows:

1. Any k-element vertex cover in G must contain
v, since otherwise it would be forced to contain
N(v), which is impossible.

2. If a vertex cover C did not contain u then it
would be forced to contain N [v]. But then there
would be no harm in exchanging v for u.

3. If G has a k-element vertex cover C that does
not contain v, then it must contain u. But then
C − u + v is also a k-element vertex cover. Thus
G has a k-element vertex cover if and only if it
has one that contains v.

4. If G has a k-element vertex cover C that does
contain u, then either y or z must also be in C
since they are adjacent, say y. But since there is
no harm in exchanging the node u with z, then
C contains y and z.

Within all the algorithms we have implemented, these
are the only four kernelization rules that have been
used. This list is by no means a complete list of rules
that could be implemented in a distributed way, but
these are sufficient to test the usefulness of using pa-
rameterized complexity to derive templates for ACO.

4.2 TransKernelized Vertex Cover ACO

Within this algorithm, we have integrated the ker-
nelization rules into the ants’ state transition rule,
modified from equation (2) in 2.2. The new state
transition rule is:

pk
j =

1, if q < q0 and ((j ∈ χk) or
(|χk| = 0 and
j = arg max

r∈Ak

{τrη
β
rk}))

0, if q < q0 and j /∈ χk and
j 6= arg max

r∈Ak

{τrη
β
rk}

τjηβ
jk∑

r∈Ak

τrη
β
rk

, if q ≥ q0,

where χk denotes the set of vertices that belong in
the vertex cover according to the kernelization rules
in section 4.1 for ant k.
This new state transition rule is fundamentally the
same as in section 2.2 from Shyu et al. (2001) except
for the use of a new set χk in the cases when q < q0.

4.3 PreKernelized Vertex Cover ACO

Within this algorithm, we perform kernelization be-
fore running ACO, placing pheromone on the in-
cluded nodes. This has been implemented by intro-
ducing a new pheromone rule called the initialization
pheromone update rule. This rule is run prior to
starting the ACO algorithm and lays an initial quan-
tity of pheromone on the nodes determined by the
kernelization rules of section 4.1. The initialization
update rule for every node i is:

τi =
{
|V |, if i ∈ χ
0, otherwise.

where χ denotes the set of vertices that belong in the
vertex cover according to the kernelization rules in
section 4.1.
Because an initial round of ACO has not been per-
formed, we are not able to drop τ0 pheromone on
the nodes in χ. Therefore, we drop a quantity of
pheromone equal to the number of nodes in the graph
instead. Otherwise the remainder of this algorithm is
identical to the standard ACO algorithm presented in
section 2.2 from Shyu et al. (2001).

4.4 CycleKernelized Vertex Cover ACO

Within this algorithm, we perform kernelization af-
ter each cycle of ACO, placing pheromone on the in-
cluded nodes. This has been implemented by modify-
ing the global update rule to place pheromone on the
nodes determined by kernelization as well as on the
nodes of the current best solution. The new global
update rule, modified from equation (3), is:

τi =

(1− ρ)τi + τ0ρ∆τi + τ0, if i ∈ V ′
c and i ∈ χ

(1− ρ)τi + τ0ρ∆τi, if i ∈ V ′
c

(1− ρ)τi + τ0, if i ∈ χ
(1− ρ)τi, otherwise

where χ denotes the set of vertices that belong in the
vertex cover according to the kernelization rules in
section 4.1.
This new global update rule contains two more cases
than the global update rule in section 2.2 but fun-
damentally just involves placing τ0 pheromone on the
nodes that are in χ after performing the regular global
update rule. Otherwise this algorithm is identical to
the standard ACO algorithm presented in section 2.2
from Shyu et al. (2001).

5 Evaluation

The test to see if these three algorithms are an im-
provement over traditional ACO is whether they find
better solutions when possible to various vertex cover
problems, or whether they find the same solution in
less time. Each test has been run twice for each graph,
and for each size of graph, two graphs have been gen-
erated, giving four tests for each size of graph (this is
discussed further in section 5.2). All graphs used are
generated from an algorithm outlined in section 5.1.
We ran tests on graphs of size 10, 20, 30, 50, 70, 90,
110, 130, 140, 150, 160, 170, 190, 210, 230, 250, 270,
290, 300, 310, 500, and 1000 nodes. For each test, all
three algorithms and a traditional ACO implementa-
tion were run simultaneously (as much as possible on
a single CPU machine). Each algorithm is given 10
minutes running time for itself on the CPU. The out-
put of each test is the size of the smallest vertex cover

Graph ID Num of Nodes Solution Time (sec.)
1 1000 632 814.5
1 1000 635 647.3
2 1000 653 606.4
2 1000 656 642.9

avg 1000 644 677.8

Table 2: Results for traditional ACO on graphs of
size 1000

found by each algorithm and the amount of time it
took to get to that solution.
Section 5.1 discusses the algorithm we have created
to randomly generate graphs for testing the three new
ACO algorithms; section 5.2 describes the results of
running these tests; and section 5.3 discusses these
results.

5.1 Graph Generation Algorithm

Our graph generation algorithm, given a set size n,
randomly generates a graph with n nodes. The nodes
in the graph are placed spatially on the screen with a
minimum bound t on the number of pixels between all
nodes. This minimum number of pixels is calculated
according to the formula t = 20000

n+400 .

Initially the nodes are created and given a random
location spatially on the screen. If the Euclidean dis-
tance between a node and any other is greater than
the threshold t, then the node is placed at its cur-
rent location on screen. Otherwise a new location is
randomly generated and compared again to see if it
fulfills this requirement.
Then, for each node the algorithm picks the mini-
mum guaranteed number of edges connecting to it,
generated randomly from a uniform distribution on
the interval [0,4]. These n edges are then created,
connecting that node with its n closest neighbours (as
determined by Euclidean distance). Note that since
this takes place for every node, it is possible to have
a maximum of n− 1 edges connected to any node in
the generated graph.

5.2 Results

As discussed above, for each size of graph, two runs
were done each on two different graphs of that size.
For example, the results for the standard ACO al-
gorithm on graphs of size 1000 were as in table 2.
The Solution column gives the number of nodes in
the vertex cover that the algorithm has chosen as op-
timal; the Time column gives the number of seconds
to first find a solution of this size. Table 3 presents
summarised data for all four algorithms, that is, the
three new ACO algorithms plus the standard ACO
algorithm.
The columns labelled (A) are the results for
TransKernelized Vertex Cover ACO. The columns la-
belled (B) are the results for CycleKernelized Ver-
tex Cover ACO. The columns labelled (C) are the
results for PreKernelized Vertex Cover ACO. The
columns labelled (D) are the results for traditional
Vertex Cover ACO.
The Wilcoxon rank sum test can be used to test the
null hypothesis that two populations X and Y have
the same continuous distribution (by comparing n
samples from each population). If the two popula-
tions have the same approximate mean, then W is
close to zero. The larger W is, the further apart the

two populations are in distribution. If the p value is
small, this tells us that this difference in distributions
is not a coincidence.
Table 5 contains the results from applying the
Wilcoxon rank-sum test to the raw data generated
from the three algorithms and a standard ACO al-
gorithm. In table 5, the columns labelled Sol are the
results of comparing the size of the vertex cover found
by an algorithm against the size of the vertex cover
found by traditional ACO within the time limit. The
columns labelled Time are the results of comparing
the time it takes to find a solution by an algorithm
against traditional ACO in the cases where they both
find the same solution. In the case of these tests, we
want a negative W with an absolute value as large
as possible. The larger the absolute value of W is,
the better the algorithm performs overall compared
to traditional ACO.
Tables 6 and 7 contain the results of applying the
Wilcoxon rank-sum test to the processed data that is
sampled in section 5.2 for the three algorithms and
a standard ACO. A negative value for W shows that
the first algorithm being compared is better whereas
a positive value shows that the second algorithm be-
ing compared is better. For example, in comparing
TransKernelized Vertex Cover ACO vs PreKernelized
Vertex Cover ACO the W value for solutions is -91,
so we can say that the TransKernelized Vertex Cover
ACO algorithm performs significantly better than the
PreKernelized Vertex Cover ACO algorithm in gen-
erating solutions.
In table 6, the columns show how each algorithm per-
forms in terms of solutions compared to each other.
In table 7, the columns show how each algorithm per-
forms in terms of time compared to each other for the
cases where both algorithms find the same solution.

5.3 Discussion

In this section we will draw a few conclusions from
the results discussed in section 5.2.
Firstly, all three combination algorithms perform sig-
nificantly better than the standard algorithm in so-
lution quality and in time to solution with p-value
0.0001, as indicated in table 5.
Secondly, TransKernelized Vertex Cover ACO per-
forms significantly better than all other algorithms.
This is indicated in table 5 where its W value is much
greater than the W values for either of the other two
algorithms, and confirmed the pairwise results of ta-
ble 6, where TransKernelized outperforms the other
three, with p-values significantly less than 0.01.
Thirdly, CycleKernelized Vertex Cover ACO and
PreKernelized Vertex Cover ACO perform roughly
the same. Table 5 gives these algorithms W values of
-703 and -535 respectively. The p-values in the pair-
wise comparison of the two in table 6 mean that we
cannot claim that the performance of the algorithms
differs.
Fourthly, CycleKernelized Vertex Cover ACO and
PreKernelized Vertex Cover ACO appear to find a
solution most quickly on average. However, there is
not sufficient data, as indicated in table 7, to make a
strong claim about this.
Further, to investigate the scalability of the algo-
rithms, we performed a linear regression on the av-
eraged results for the size of the vertex cover. The
steeper the slope produced, the worse the solutions
generated by that algorithm are likely to be as the
algorithm scales up. Table 4 contains the slopes, in-
tersects, and r2 values for the three new algorithms

Size Sol. (A) Time (A) Sol. (B) Time (B) Sol. (C) Time (C) Sol. (D) Time (D)
10 7 0.34 7 0.07 7 0.08 7 0.08
50 31 1.30 31 1.69 31 1.039 31.5 6.12
90 59 4.04 59 4.93 59 3.47 59 7.79
130 80 8.49 80 47.54 80.5 5.507 80.25 165.86
170 106.5 47.53 108 117.02 107.5 22.04 109.25 91.70
210 127.5 31.86 127.5 27.25 127.5 32.43 127.75 132.01
250 155.5 66.52 159.25 196.38 158.75 32.84 160.25 156.94
290 180 170.04 181 171.56 182 50.85 182 295.61
500 306.25 302.10 311.75 415.07 312.5 195.18 314.25 470.77
1000 631.5 527.34 636.5 615.11 633.25 431.31 644 677.78

Table 3: Extract of results from averaged TransKernelized Vertex Cover ACO (A) data, CycleKernelized Vertex
Cover ACO (B) data, PreKernelized Vertex Cover ACO (C) data, and traditional Vertex Cover ACO (D) data.
Times measured in seconds.

Algorithm Slope Intersect r2

TransKernelized Vertex Cover ACO 0.6271 -1.1040 0.9996
CycleKernelized Vertex Cover ACO 0.6334 -1.4241 0.9997
PreKernelized Vertex Cover ACO 0.6311 -0.9157 0.9998
Traditional Vertex Cover ACO 0.6408 -2.0130 0.9996

Table 4: Slope, intersect, and r2 values for curves fitted to solutions of three new ACO algorithms and a
standard ACO algorithm.

Sol. (A) Time (A) (sec.) Sol. (B) Time (B) (sec.) Sol. (C) Time (C) (sec.)
W -1275 -531 -703 -979 -535 -1065
n 50 38 37 50 34 50
z -6.15 -3.85 -5.3 -4.72 -4.57 -5.14

p (1-tail) <.0001 0.0001 <.0001 <.0001 <.0001 <.0001
p (2-tail) <.0001 0.0001 <.0001 <.0001 <.0001 <.0001

Table 5: Results from the Wilcoxon rank-sum test on the raw data

A vs D B vs D C vs D A vs C A vs B B vs C
W -136 -120 -100 -91 -78 -21
n 16 15 14 13 12 10
z -3.5 -3.39 -3.12 -3.16 -3.04 -1.04

p (1-tail) 0.0002 0.0003 0.0009 0.0008 0.0012 0.1492
p (2-tail) 0.0005 0.0007 0.0018 0.0016 0.0024 0.2983

Table 6: Results from the Wilcoxon rank-sum test to the averaged solutions

A vs D B vs D C vs D A vs C A vs B B vs C
W -9 -22 -34 31 -21 40
n 6 7 8 9 10 12
z - - - - -1.04 1.55

p (1-tail) - - - - 0.1492 0.0606
p (2-tail) - - - - 0.2983 0.1211

Table 7: Results from applying the Wilcoxon rank-sum test to the averaged times

and the standard ACO algorithm. All algorithms ap-
pear to scale up linearly (r2 values very close to 1),
with no major differences between slopes.

6 Conclusion

As has been discussed in section 5.3, all three algo-
rithms provide a definite improvement over standard
ACO. More precisely, TransKernelized Vertex Cover
ACO has been found to find significantly better solu-
tions over the other three algorithms, but PreKernel-
ized Vertex Cover ACO and CycleKernelized Vertex
Cover ACO still find better solutions over standard
ACO. Clearly using kernelization rules as a kind of
template under all three strategies provides a definite
improvement over not using any template at all.
However, both PreKernelized Vertex Cover ACO and
CycleKernelized Vertex Cover ACO appeared to be
able to find solutions quicker than TransKernelized
Vertex Cover ACO (which could find solutions only
marginally quicker than traditional ACO), although
more data needs to be collected to establish this de-
finitively.
Since TransKernelized Vertex Cover ACO signi-
cantly outperforms all algorithms in terms of solu-
tion whereas CycleKernelized Vertex Cover ACO and
PreKernelized Vertex Cover ACO appear to perform
better in terms of time, this suggests the trade-off be-
tween ant complexity and quality of solutions. Since
TransKernelized Vertex Cover ACO uses more com-
plex ants, it is able to find better solutions at the
trade-off of spending more time generating solutions.
However, since all three algorithms outperform stan-
dard ACO in both solution and time, there is no
tradeoff between whether to use kernelization as a
kind of template or not. It is always beneficial to use
kernelization over not.
Although TransKernelized Vertex Cover ACO is def-
initely best for this particular application, as a meta-
heuristic it might not be applicable to all combinato-
rial optimisation problems (COPs) or all applications
of these COPs. It may turn out that CycleKernelized
Vertex Cover ACO or PreKernelized Vertex Cover
ACO are the most useful out of all three algorithms
because they are better suited to different problems
and applications. It is also interesting to note than
PreKernelized Vertex Cover ACO did contain signifi-
cant gains in both solution quality and time through
a simply kernelization pre-processing step before run-
ning ACO. This algorithm conforms most closely to
the original ants with templates idea. The pheromone
laid by the kernelization step at the beginning forms
a template that acts as a guide along which the ants
can perform stigmergy and autocatalysis to find so-
lutions.
This paper represents the beginning of an exploration
of this type of combination of heuristic and reduction
approaches to COPs. The most immediate area for
future work is a more fine-grained analysis of the ver-
tex cover experimental data. We are interested in de-
termining, beyond our informal intuitions, why each
method performed as it did. In addition, there is re-
cent work on the notion of phase transition for vertex
cover (Hartmann & Weigt 2003) which may be use-
ful in classifying problem instances in a way that will
allow a more detailed understanding of the methods’
performance.
Further avenues for future work include investigat-
ing the application of our work to other COPs and
trying to integrate more kernelization rules into the
algorithms to see if this results in further improved

solutions. More interestingly, this might also involve
the development of quasi-kernelization rules: that is,
kernelization rules that reduce a problem in complex-
ity but only guarantee with high probability that an
optimal solution can be found (as opposed to the ab-
solute guarantee that our current rules provide).

References

Alber, J., Fellows, M. R. & Niedermeier, R. (2002), ‘Efficient
data reduction for dominating set: A linear problem ker-
nel for the planar case’, Proceeeings of the 8th Scandina-
vian Workshop on Algorithm Theory pp. 150–159.

Bansal, N. & Raman, V. (1999), Upper bounds for maxsat:
Further improved, in ‘Proceedings of the 10th Inter-
national Symposium on Algorithms and Computation’,
Springer-Verlag, pp. 247–258.

Bodlaender, H. L., Downey, R. G., Fellows, M. R., Hallett,
M. T. & Wareham, H. T. (1995), ‘Parameterized com-
plexity analysis in computational biology’, Computer Ap-
plications in the Biosciences (CABIOS) 11(1), 49–57.

Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999), Swarm In-
telligence From Natural to Artificial Systems, A volume
in the Santa Fe Institute studies in the science of com-
plexity., Oxford University Press.

Buss, J. F. & Goldsmith, J. (1993), ‘Nondeterminism within
P’, SIAM J. Comput. 22(3), 560–572.

Caro, G. D. & Dorigo, M. (1998), ‘Antnet: Distributed stig-
mergetic control for communications networks’, Journal
of Artificial Intelligence Research 9, 317–365.

Chen, J., Kanj, I. & Jia, W. (1999), ‘Vertex cover: Further
observations and further improvements’, Proceedings of
the Workshop on Graph-Theoretic Concepts in Computer
Science pp. 313–324.

Dorigo, M., Caro, G. D. & Gambardella, L. M. (1999), ‘Ant
algorithms for discrete optimization’, Proceedings of Ar-
tificial Life 5 pp. 137–172.

Dorigo, M. & Gambardella, L. M. (1997), ‘Ant colonies for the
traveling salesman problem’, BioSystems 43, 73–81.

Dorigo, M., Maniezzo, V. & Colorni, A. (1991), Positive feed-
back as a search strategy, Technical report 91-016, Dipar-
timento Di Elettronic, Politecnico Di Milano.

Downey, R. (2003), ‘Parameterized complexity for the skep-
tic’, Proceedings of the 18th IEEE Annual Conference on
Computational Complexity pp. 147–169.

Downey, R., Fellows, M. & Stege, U. (1997), ‘Parameterized
complexity: A framework for systematically confronting
computational intractability’, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science .

Fellows, M. (2002), ‘Parameterized complexity: The main ideas
and connections to practical computing’, Electronic Notes
in Theoretical Computer Science 61.

Gambardella, L. M., Taillard, E. & Agazzi, G. (1999), MACS-
VRPTW: A multiple ant colony system for vehicle routing
problems with time windows, Technical report, Istituto
Dalle Molle Di Studi Sull Intelligenza Artificiale.

Hartmann, A. K. & Weigt, M. (2003), ‘Statistical mechanics of
the vertex-cover problem’, Journal of Physics A: Mathe-
matical and General 36(43), 11069–11093.

Maniezzo, V. & Colorni, A. (1999), ‘The ant system applied to
the quadratic assignment problem’, Knowledge and Data
Engineering 11(5), 769–778.

Niedermeier, R. & Rossmanith, P. (1999), ‘Upper bounds for
vertex cover further improved’, Lecture Notes in Com-
puter Science 1563, 561–570.

Shyu, S. J., Yin, P.-Y., Lin, B. M. T. & Hsiao, T. S. (2001),
‘An ant colony optimization algorithm for the minimum
weight vertex cover problem’, Annals of Operational Re-
search 131, 283–304.

Stege, U. & Fellows, M. (1999), An improved fixed-parameter-
tractable algorithm for vertex cover, Tech. report 318, De-
partment of Computer Science, ETH Zurich.

