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Abstract. For solving combinatorial optimisation problems, exact meth-
ods accurately exploit the structure of the problem but are tractable only
up to a certain size; approximation or heuristic methods are tractable for
very large problems but may possibly be led into a bad solution. A question
that arises is, From where can we obtain knowledge of the problem struc-
ture via exact methods that can be exploited on large-scale problems by
heuristic methods? We present a framework that allows the exploitation of
existing techniques and resources to integrate such structural knowledge
into the Ant Colony System metaheuristic, where the structure is deter-
mined through the notion of kernelization from the field of parameterized
complexity. We give experimental results using vertex cover as the prob-
lem instance, and show that knowledge of this type of structure improves
performance beyond previously defined ACS algorithms.

1 Introduction

For solving combinatorial optimisation problems, exact methods accurately ex-
ploit the structure of the problem but are tractable only up to a certain size; ap-
proximation or heuristic methods are tractable for very large problems but may
possibly be led into a bad solution. A third approach could be to combine heuris-
tics and exact methods, which would hopefully still run quickly but the quality of
solution would be improved over just regular heuristics. Some examples of com-
bining heuristics with exact methods are discussed in [1]. In the work discussed in
this paper, we investigate the use of an already well established body of techniques
from the field of parameterized complexity [2,3] for identifying problem structure
as part of an exact solution, the extent to which these techniques can be integrated
into heuristics, and what advantage this gives over a standard heuristic approach.

In section 2 of this paper, we discuss ant colony system (ACS) for the vertex
cover problem. In section 3 we discuss parameterized complexity and kerneliza-
tion. In section 4 we present our framework for integrating ACS with kerneliza-
tion. In section 5 we give experimental results for our new algorithms and in
section 6 we conclude.

2 ACS for the Minimum Vertex Cover Problem

In this section we will present an algorithm by Gilmour and Dras [4] for ant
colony system on the vertex cover problem (VCP). Given the graph G = (V, E),
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the minimum VCP is the problem of finding a set of nodes V ′ ∈ V such that every
edge E is covered by a node from V ′ and such that the number of nodes in V ′ is
minimised. Our ant colony system algorithm is based upon the ACS algorithm
for the TSP [5] and the algorithm by Shyu, Yin, & Lin [6] for the weighted vertex
cover problem. In section 2.1 we discuss the problem representation as defined
by Shyu et al. [6] for ACS on the vertex cover problem. In sections 2.2 and 2.3 we
present our adapted random proportional transition rule and pheromone update
rules.

2.1 Problem Representation

Shyu et al. note that, unlike the Traveling Salesman Problem (TSP) for which
the first ACS algorithm was designed, a VCP solution does not constitute a path
in the graph. Thus in order to allow our algorithm to find unordered subsets of
nodes, we construct a complete graph Gc = (V, Ec). This will “guarantee that
there always exists a path in G, a sequence of unrepeated adjacent vertices, which
covers exactly and only the vertices in V ′” [6]. But we want to solve the minimum
vertex cover problem for G and not Gc and therefore we need to preserve the
details of the original graph within this new representation. Therefore we define
for each ant k a binary connectivity function ψk : Ec → {0, 1} as

ψk(i, j) =
�

1 if edge (i, j) ∈ E;
0 if edge (i, j) ∈ Ec − E,

(1)

2.2 Random Proportional Transition Rule

Our rule for deciding which node j ant k should place in its vertex cover con-
struction next is:

j =
�

arg maxu∈Jk{[τu(t)] · [ηu]β} if q ≤ q0;
J if q > q0,

(2)

where q is randomly selected from the distribution [0, 1]; q0 is a tunable pa-
rameter such that 0 ≤ q0 ≤ 1; τu(t) is the amount of pheromone on node u;
ηu =

∑
z∈N(u) ψk(u, z) is the heuristic goodness of node u; Jk is the set of

nodes that ant k may still visit; and J ∈ Jk is a node that is randomly selected
according to the probability:

pJk(t) =
[τJ (t)] · [ηJ ]β�
l∈Jk [τl(t)] · [ηl]β

(3)

After an ant visits a node which it has just placed in its candidate solu-
tion, it sets ψk(i, j) = 0 for every edge (i, j) connected to the node j that it
has just visited. This allows the ant to keep track of which edges have been
covered. A solution is constructed when all edges are covered. But, before the
next cycle can continue, the connectivity values need to be reset according to
equation (1).
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2.3 Pheromone System

For the vertex cover problem, pheromone is placed on nodes since we are in-
terested in constructing an unordered subset of all the nodes within the graph.
Therefore, the global and local pheromone update rules need to be updated to
work with nodes. Our global pheromone update rule, which is executed by one
ant at the end of each cycle, is defined as:

τi(t) ← (1 − ρ) · τi(t) + ρ · Δτi(t) (4)

where i are the nodes belonging to the current best solution T +; Δτi(t) = 1/L+

such that L+ is the size of the solution T +; and ρ is a parameter governing
pheromone decay such that 0 < ρ < 1.

Similarly, our local pheromone update rule, which is executed by every ant
on each node as it is placed in the candidate solution, is defined as:

τi = (1 − ϕ)τi + ϕτ0 (5)

where ϕ ∈ (0, 1) is a parameter which simulates the evaporation rate of phero-
mone; and τ0 is the amount of pheromone every edge is initially set to before
this algorithm starts.

Similar to the TSP, our formulation for τ0 is τ0 = 1
(n·Lnn) where Lnn is the

size of a solution produced by a simple greedy heuristic.

3 Parameterized Complexity

An overview of parameterized complexity is available in [2,3]; we give a brief
outline here. In section 2 we defined what we will now call the general minimum
vertex cover problem. A related problem is the k-vertex cover problem: given a
graph G = (V, E) and a parameter k, the k-vertex cover problem is the problem
of finding a vertex cover of size less than or equal to k. This problem is still
NP-complete. A key idea of parameterized complexity is that if some value of a
problem is known to be bounded in a certain context, useful algorithms with good
complexity properties can be developed. For the k-vertex cover problem, k might
be bounded by the maximum size of the vertex cover that we are trying to find;
in such a case, there is a best-case algorithm with complexity O(kn + 1.2852k)
[7] that is tractable for k up to 400. Parameterized complexity also allows a more
fine-grained analysis of problems classified as NP-complete: some are amenable
to this treatment, while others have only brute-force solutions of complexity
O(nk+1). Those that are amenable to this approach are called fixed-parameter
tractable (FPT).

Parameterized complexity contains both a framework of complexity analysis
and a corresponding toolkit of algorithm design. One such tool for algorithm
design is kernelization. The idea behind kernelization is reducing a problem
in polynomial time to its problem kernel such that ideally, even a brute-force
attack is an option; however, usually an approach such as bounded search trees
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is necessary for difficult problems. Kernelization is the core idea behind the
successful algorithms for the vertex cover problem.

Many different optimization problems [3] have been analyzed using the notions
of parameterized complexity, for example the dominating set problem, traveling
salesman problem, and the 3-CNF satisfiability problem, often with several pro-
posed algorithms for each problem. There is thus a wide range of tools available
to be used. The aim of this paper is to see whether, and in what way, these can
be combined with ACO as a kind of template in the context of the vertex cover
problem.

4 Ant Colony System with Structure

The key idea in this paper is that kernelization can be used to give ACS infor-
mation about the problem. We will present six variant algorithms for combining
these. Within the algorithms that we propose, we will be utilizing just one ker-
nelization rule. The rule we have chosen to use is: “If G has adjacent vertices u
and v such that N(v) ⊆ N [u], then replace (G, k) with (G − u, k − 1) and place
u in the vertex cover” [2]; here N(v) denotes the set of vertices that form the
neighbourhood of v and N [v] denotes N(v) ∪ {v}. See [8] for a more detailed
discussion on how we came to use this rule.

Kernelized Ant Colony System. This algorithm performs kernelization within the
initialisation stage of the algorithm and then runs regular ACS on the resulting
kernel graph. We define a set χ that contains all the nodes that are identified by
kernelization as belonging to an exact solution. Within the kernelization phase
we remove from the graph all the nodes that belong to χ and all edges connected
to nodes in χ.

PreKernelized Ant Colony System. This algorithm works similarly to Kernelized
ACS except rather than removing nodes from the graph, it sets the pheromone
on the selected nodes to be τkern. This will initially make the nodes in the
kernelization set more attractive to ants than any other nodes in the problem.

CycleKernelized Ant Colony System. This algorithm is similar to PreKernel-
ized ACS except that the kernelization information is continually reinforced in
pheromone. Therefore we have moved the kernelization component out of the ini-
tialisation phase and into the global pheromone update rule. As well as placing
pheromone on the current best solution, the ant selected to perform the global
pheromone update rule also reinforces the pheromone on the nodes in χ.

KernelAnts Ant Colony System. ACS uses m ants to generate solutions to a
problem. However, KernelAnts ACS uses k additional ants to kernelize the graph
and place pheromone on the nodes identified through kernelization whilst the
original m ants continue to perform regular ant colony system. Each turn, these
kernelants set the pheromone on one node each to τkern; this node is selected
by choosing the node in χ with the smallest pheromone value. This occurs in
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parallel with the regular ants continuing to construct solutions to the problem
influenced by the pheromone on the graph.

TransKernelized Ant Colony System. Within this algorithm, we have incorpo-
rated the kernelization into the ants’ random proportional transition rule. When
an ant draws a random number between zero and one that is less than the thresh-
old q0, the ant will first look in the kernelization set χ to see if there is a node to
visit before picking the best of all possible options as with regular ACS. Should
the random number be above the threshold, the ant assigns to each potential
node a probability and decides where to go next probabilistically, as with regular
ACS.

Neighbourhood TransKernelized Ant Colony System. One problem with Trans-
Kernelized ACS is that it can involve a lot of kernelization on the fly. Neigh-
bourhood TransKernelized ACS is an alternative algorithm that picks a node
using the regular ACS random proportional transition rule (see equation (2)).
However, if q ≤ q0, this algorithm then tests all the neighbours of node j to
ensure that none of them belong to the kernelization set χ and therefore make
a better choice. Since either j is in the vertex cover or all of its neighbours are,
it is safe to include j into our vertex cover should none of its neighbours be in
the kernelization set.

5 Evaluation

5.1 Parameter Investigation

We generated a set of 160 graphs with number of nodes ranging from 100 to
800 and number of edges ranging from 150 to 4000 and performed parameter
analysis on ant colony system and our six new algorithms for the vertex cover
problem. We timed how long ant colony system took to complete 2001 iterations
on each graph and that was the amount of time given to each algorithm during
parameter analysis. We then explored one parameter at a time; table 1 contains
the parameters found to be good.

5.2 Challenging Benchmarks

Benchmarks with Hidden Optimum Solutions for Graph Problems2 is a website
with a collection of challenging instances of graph problems constructed by hid-
ing optimum solutions for a specific problem in hard graphs [9]. This website
contains forty instances for the VCP of between 450 and 1534 nodes.

We initially timed how long it took ant colony system to run on each graph
for 200 iterations. We then set each algorithm to run on each graph for that
1 We chose 200 iterations because the Mann-Whitney statistical test has shown sta-

tistical improvement between 50, 100, 150, and 200 iterations but no improvement
between 200 and 250 iterations.

2 http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm
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Table 1. Good parameters for ant colony system and our six new algorithms. These
parameters are: number of ants m; number of kernelants k; influence of heuristic in-
formation β; pheromone trail evaporation ρ; probability of including the best choice in
tour construction q0; and quantity of pheromone to drop on kernelized nodes τkern.

ACS KACS PKACS CKACS KAACS TKACS NTKACS
m 50 40 40 40 40 10 40
k - - - - 10 - -
β 4 5 5 4 4 5 5
ρ 0.1 0.1 0.1 0.1 0.1 0.2 0.1
q0 0.9 0.9 0.9 0.9 0.9 0.999 0.9

τkern - - 0.5 0.5 0.95 - -

Table 2. The sum and average of all results for Shyu et al.’s algorithm, ACS, the
optimal solution, and our six new algorithms, on benchmark instances

SYL ACS KACS PKACS CKACS KAACS TKACS NTKACS Opt
sum 39219 39177 39110 39116 39035 39037 39077 39092 38690

average 980.475 979.425 977.75 977.9 975.875 975.925 976.925 977.3 967.25

period of time. Table 2 contains the sum and average of the results for each
algorithm. We have adopted the approach of Birattari [10], of using a maxi-
mum number of instances possible with just one run per instance for all ex-
perimentation. See [8] for a more detailed discussion of all experiments and
results.

We applied the Mann-Whitney U-test—recommended for use in metaheuris-
tic analysis [11]—to these results and made the following conclusions. Firstly, all
algorithms including our ACS algorithm were statistically significant improve-
ments over the algorithm by Shyu et al.. Secondly, all kernelization algorithms
were a statistically significant improvement over regular ACS. Thirdly, there was
no statistical difference between CycleKernelized ACS and KernelAnts ACS but
they were statistically better than all other algorithms. Lastly, Kernelized ACS,
PreKernelized ACS, TransKernelized ACS, and Neighbourhood TransKernelized
ACS all performed roughly the same; there is only a small statistical preference
for TransKernelized ACS. The primary conclusion from these results is that the
kernelized algorithms do outperform regular ACS algorithms.

5.3 Random Graphs

We constructed two groups of graphs of 500 nodes each. The first group of
graphs contains graphs with 100 to 500 nodes, the second 600 to 1000 nodes.
Each algorithm ran on each graph for the quantity of time required for ACS
to perform 200 iterations on that graph. All random graphs were generated
using the algorithm proposed by Skiena [12] and selected to contain a variety of
parameters for number of nodes, number of edges, and kernel sizes. Again only
one run per graph was performed.
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Table 3. The sum and average of all results for Shyu et al.’s algorithm, ACS, and our
six new algorithms, on random graphs with 100 to 500 nodes

SYL ACS KACS PKACS CKACS KAACS TKACS NTKACS
sum 99229 95486 95286 95366 95354 95273 95010 94967

average 198.458 190.972 190.572 190.732 190.708 190.546 190.02 189.934

Table 4. The sum and average of all results for Shyu et al.’s algorithm, ACS, and our
six new algorithms, on random graphs of 600 to 1000 nodes

SYL ACS KACS PKACS CKACS KAACS TKACS NTKACS
sum 264700 255329 254407 254703 254785 254517 253671 253272

average 529.4 510.658 508.814 509.406 509.57 509.034 507.342 506.544

Table 3 contains the sum and average of the results for each algorithm for
the first group of graphs. We applied the Mann-Whitney U-test to these re-
sults and made the following conclusions. Firstly, all algorithms are a statistical
improvement over the algorithm by Shyu et al.. Secondly, all kernelization al-
gorithms except PreKernelized ACS are a statistical improvement over regular
ACS. Thirdly, TransKernelized ACS and Neighbourhood TransKernelized ACS
perform statistically speaking roughly the same, and these two algorithms are a
statistical improvement over all other algorithms.

Table 4 contains the sum and average of the results for each algorithm for
the second set of graphs. We applied the Mann-Whitney U-test to these results
and made the following conclusions. Firstly, all algorithms were a statistical
improvement over the algorithm by Shyu et al.. Similarly, all kernelization algo-
rithms were a statistical improvement over regular ACS. Secondly, Neighbour-
hood TransKernelized ACS was an improvement over all other algorithms and
TransKernelized ACS a clear second.

6 Conclusion

Our overall conclusion is that kernelization rules from the field of parameter-
ized complexity are a useful and extensive resource for combination with ACO.
Specifically, we have found that our six kernelization algorithms are useful for
getting better results for both our benchmark problems and random graphs. In
the larger, harder benchmark problems, it was found that pheromone based ker-
nelization algorithms performed the best. This is probably because pheromone
based algorithms consume less CPU time and so more iterations of ACS can be
performed which is benefical for these hard problems. However, the algorithms
with kernelization integrated into the random proportional transition rule work
better on the random graphs; probably because the random graphs are not
quite as hard and so more time can be used performing kernelization. We have
further identified a structure through this work that is common enough in both
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our benchmark problems and our random graphs to significantly affect quality
of solutions, and that ant colony system is poor at solving.

There are two broad avenues for future work. Firstly, further experimentation
of this kind on the vertex cover problem using different kernelization rules would
be useful for getting greater insight into what structures ant colony system is
weak at solving. Investigation into why this is the case could also prove fruitful.
Secondly, we plan to extend the approach to other optimization problems.
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