
Search in Constraint-Based ParaphrasingMark DrasMicrosoft Research Institute, Macquarie UniversitySydney NSW Australia 2109markd@mpce.mq.edu.auAbstractExisting paraphrase systems either create suc-cessive drafts from an underlying representa-tion, or they aim to correct texts. A di�erentkind of paraphrase, also reecting a real-worldtask, involves imposing, on an original text,external constraints in terms of length, read-ability, etc. This sort of paraphrase requires anew framework which allows production of anew text satisfying the constraints, but withminimal change from the original. In orderfor such a system to be feasible when usedon a large scale, searching the space of candi-date solution texts has to be made tractable.This paper examines a method for pruning thesearch space via branch-and-bound, evaluatesthree variants to �nd the most e�cient model,and discusses its relation to standard heuristicmethods such as genetic algorithms.1 IntroductionThe paraphrasing framework of this paper is onewhere a text is modi�ed `reluctantly' to conformto external surface constraints, such as lengthor readability requirements (see, for example,Dras, 1997a). This reluctant paraphrase (RP)paradigm can best be de�ned by contrasting itwith the remedial sort of paraphrases suggestedby style checkers or in style guides. The start-ing point under this remedial style of paraphraseis an imperfect text which has to be corrected,the corrections being determined by, for exam-ple, advice to make the text \more active"; ex-amples of systems that implement this notionof paraphrase are the CCS system of Kieras(1990) used by the US military, or the grammarcheckers found in word processors. In contrast,

imagine the completion of an ideal documentwhich says exactly what the author intends, butwhich must be changed to satisfy external sur-face constraints. These constraints might be arequirement to cut down an academic paper byone page for conference publication; or to makea technical document conform to house stylereadability requirements; or some combinationof these or other sorts of external constraints.Thus, the text has to be paraphrased, albeit re-luctantly, in order to meet these requirements,and this paper describes the beginnings of a newmodel required to handle this sort of paraphrase.There are existing Natural Language Process-ing systems which already deal with surface con-straints on text. Most of these are natural lan-guage generation (NLG) systems, and fall withinthe �eld of revision-based generation: weiveR(Inui et al, 1992) and Streak (Robin, 1994) aretwo such systems. In these systems, draft textsare produced, criticised, and then paraphrased1to produce a text that �ts certain constraints.However, in these systems the constraints arelocal to a small unit of text, generally a sen-tence. For example, Streak has a constraintthat prevents sentences from being longer than46 words, whereas in the model of this paper theconstraints are applied to a whole multi-sentencetext. One approach taken by these Natural Lan-guage Generation systems is to revise the texta step at a time, adding new information un-til just before the constraints would be violated(as Streak does); in Streak's approach, once1The concept of paraphrase in these systems is some-what di�erent from the one used in this paper: oncea draft is critiqued, a `paraphrase' (textual variant) isre-generated from some underlying representation. Inthis paper a paraphrase is a direct text-to-text syntac-tic mapping.

a choice to add information has been made, itcannot be revoked. Another approach is to seeif the text has already violated constraints, andif so to rewrite it (as weiveR does); a historyof rewritings is kept so that there will not bean in�nite series of paraphrasings. These ap-proaches work well for small, sentence-scale text,but become problematic when the search spaceis larger than for sentences. For instance, undera greedy locally-optimal choosing scheme suchas that of Streak, it is possible that a globallyoptimal choice of additions could be missed, orthat in fact no solution could be found.2 The al-ternative of weiveR, keeping a history, is equiv-alent to explicitly enumerating all paraphrasealternatives; when the history gets large (again,not a problem for small, sentence-scale text) thisleads to a very large search space with the simplebacktrack search of weiveR.Applying global constraints to an entire textrequires a di�erent model, one which allows ane�cient search of the space of solutions, giventhat it is much larger. Mathematical optimi-sation techniques have been used for the pur-pose of reducing search space sizes in areas suchas scheduling and planning, and also, in Nat-ural Language Processing, in semantic parsing(Beale, 1996). This paper takes a basic modelof RP under an optimisation framework (Dras,1997a) and develops it further. The model hasthree components: a set of paraphrases whichis used to achieve the overall text modi�cation;a set of constraints to which the text must ad-here after the modi�cation; and an e�ect|thatof the change to the text caused by the para-phrases applied|which is to be minimised. Thispaper looks at a method for producing a moree�cient formulation of the basic model. The fol-lowing sections describe the components of themodel|the constraints, the paraphrases, andthe global e�ects they have on a text; a basicmathematical model for describing the interac-2In Streak, given that information-adding is op-tional, this is not too much of a problem; but, whenmodifying an entire text, if the constraints compel somechange to the text (like shortening the total length),Streak's greedy heuristic would commit to a choicebefore globally evaluating combinations of alternatives,which can be problematic.

tion of these; two more re�ned models; exper-imental work comparing the three models; anda discussion of how these models could interactwith standard heuristic techniques like geneticalgorithms.2 Components of the Model2.1 Textual ConstraintsThis section outlines three measures of text,those of length, readability and lexical density.These measures are often used in the productionof text; their numeric quality makes them par-ticularly amenable to the optimisation modelsof this paper. See also Dras (1997a).Length is the simplest measure, and is fre-quently used in practice as a constraint. Forexample, imposing a word limit on a text isstandard for academic conferences, and meet-ing this constraint often involves cutting downa longer draft version. Constraining text lengthis also a feature of computational language gen-eration systems, for instance as an explicit limiton the length of an individual text unit, as inthe Streak system (Robin, 1994).Another common measure comes from read-ability formulae, such as the Flesch ReadingEase Score (Klare, 1974-5). Standard readabil-ity formulae are equations which attempt to pre-dict, rather than evaluate, the readability oftext; in form they are generally linear combina-tions of factors which correlate with text com-plexity, such as average sentence length. Al-though readability formulae are controversialtheir use here as a constraint can be defendedon practical grounds: readability formulae areused as criteria for writing public documents inthe US, such as insurance policies and other con-tracts; for producing military or software docu-mentation; and so on. In these situations the useof readability formulae is mandatory; so for asystem which models actual constraints on text,using the formulae as a constraint is reasonable.Lexical density is a textual measure that at-tempts to capture the `condensedness' of textby measuring the proportion of non-content (orfunction) words to total text. This idea of den-sity has been used to distinguish between writ-

ten and spoken forms of language: written lan-guage tends to be more dense than spoken. Theconcept is also useful in the context of this pa-per's optimisation model to prevent excessivetext compression, and as a constraint counter-balancing the readability one. Under a typicalreadability formula, the formula value can beimproved by the sort of paraphrases which com-press text; a lexical density constraint can pre-vent too much of this.2.2 ParaphrasesWithin RP, individual paraphrases are justbroad-coverage tools, used to adjust a text,rather than the corrective devices of remedialparaphrases. Hence the most appropriate para-phrases for this work are ones that are syntac-tic in nature, as they apply to a wide range oftexts; see Dras (1997a) for more detail about thesources and subtypes of paraphrases. An exam-ple of this type is the splitting o� of a noun post-modi�er to form a separate sentence in the map-ping from Sarah eyed the page �lled with bizarrelinguistic phenomena. to Sarah eyed the page.It was �lled with bizarre linguistic phenomena.These paraphrases will cause some changeto the text in terms of the constraints de-scribed in Section 2.1. These changes arefairly straightforward|changes to the numberof words in the text, the average number ofwords per sentence, and so on; the exact wayin which this occurs is described in Section 3.1.Under RP, any change e�ected by a para-phrase is taken to be a negative (that is, un-desirable) one, moving the text away from theauthor's intended meaning. Developing an op-timisation model thus requires a quanti�cationof the e�ects that imposing a paraphrase on atext will have on that text. The de�nition ofsuch an objective function minimising the ef-fect of paraphrases, in terms of truth-conditionalmeaning and information structure, is also de-scribed in Dras (1997a). For a computationalparaphrase system a formal speci�cation of theparaphrases is also needed; this is done withinthe representation formalism based on Tree Ad-joining Grammars (Joshi et al, 1975) describedin Dras (1997b); however, an informal descrip-

tion is adequate here for discussion of the para-phrase e�ects and their inclusion into the opti-misation model.3 An Optimisation ApproachThis section presents a mathematical optimisa-tion model of paraphrasing. The basic tech-niques are those of integer programming (see,e.g., Nemhauser and Wolsey, 1988), which de-scribes the constraints and function to be min-imised in terms of linear combinations of integervariables. The integer programming approach isuseful because it provides a set of techniques for�nding an optimal solution, and heuristics forpruning the search space. After a formal pre-sentation of a basic model, an example is givenfor clari�cation.3.1 A Basic ModelIn developing an optimisation model, it is �rstnecessary to identify the decision variables:that is, those factors about which a decision isto be made. In this case, it is the paraphrasemappings: for each paraphrase, the decision iswhether this paraphrase should be applied tothe text to move it towards satisfying the con-straints while minimally perturbing the text. Inthis situation, the choice is binary, whether ornot to apply the paraphrase. Given this, thedecision variables arepij = 0/1 variable representing the jthparaphrase for sentence iThe objective function, the function to beoptimised, is, for RP, a measure of the changeto the text. With cij being the e�ect (or cost)of each paraphrase, if applied, this function hasthe form z =X cij:pijExpressed mathematically, the length con-straint is Xwij :pij � k1where wij is change to length of sentence icaused by paraphrase ij and k1 is requiredchange to the length of text in words (k1 � 0).A simpli�ed readability constraint using onlythe average sentence length component, is

W +Pwij:pijS +P sij:pij � k2That is,X(wij � k2:sij)pij � k2S �Wwhere sij is change to number of sentences inthe text by paraphrase ij, W is total words inoriginal text, S is total sentences in original text,and k2 is required average sentence length (k2 �0).The lexical density constraint requires theproportion of function words (taken here to beall closed class words) to total words to begreater than some constant value. Analogouslyto the readability constraint, this isX(fij � k3:wij)pij � k3W � Fwhere fij is change to number of function wordscaused by paraphrase ij, F is total number offunction words in original text, and k3 is re-quired proportion of function words to totalwords (0 � k3 � 1).Given that there are ni paraphrases for sen-tence i, there is a potential conict for the para-phrases. To simplify their application, an extraconstraint is added, stating that there can be atmost one paraphrase for each sentence:Xj pij � 1An example is presented in the next section,to illustrate the model. The small size of this ex-ample does not allow a real demonstration of theusefulness of the approach, since the problemcan be solved almost by inspection. However, inlarger problems this method of modelling allowsthe use of techniques such as branch-and-bound(Nemhauser and Wolsey, 1988) which make thesolution of the problem feasible, where the solu-tion would otherwise be impractical because ofthe problem's exponential complexity.3.2 An ExampleAs an example, take the short text:The cat sat on the mat which was by the door.It ate the cream ladled out by its owner. Theowner, an eminent engineer, had a convertibleused in a bank robbery.

minimisez = c11p11 + c21p21 + c31p31 + c32p32given � 2p11 + 3p21 + 3p31 � 3p32 � 0� 2p11 � 7p21 � 7p31 � 3p32 � -3� 0:95p11+ 1:43p21+ 1:43p31+ 0:58p32� 0.33p31 + p32 � 1Figure 1: Pure binary variable formulationThe values of F , W and S are 17, 33 and 3respectively.Possible paraphrases of individual sentences,using just relative pronoun deletion, post-modi�er split, and parenthetical deletion, are:(1) p11. The cat sat on the mat by the door.p21. It ate the cream. It had been ladled outby its owner.p31. The owner, an eminent engineer, had aconvertible. It had been used in a bankrobbery.p32. The owner had a convertible used in abank robbery.This gives decision variables and associatedcoe�cients as in Table 1. For the example,the constraint values are (arbitrarily) chosen ask1 = 0 (at worst no compression of text length),k2 = 10 (average sentence length no greater than10), and k3 = 0:525 (function words no less than52.5% of the text). The basic integer program-ming (IP) formulation is then given in Figure 1.There are two alternatives which are feasiblesolutions, with either three variables zero andp32 = 1, or three variables one and p31 = 0.This gives two values for the objective function,z = c32 and z = c11 + c21 + c32. Since underthe RP assumption all changes involve a positivecost, the best alternative is the �rst, with onlythe second paraphrase for sentence number threebeing applied. The resulting text is then as theoriginal with an eminent engineer deleted.4 Re�ning the Basic ModelIt is well-known (Williams, 1995) that IP prob-lems have many di�erent formulations, muchparaphrase ij fij wij sij11 -2 -2 021 +3 +3 +131 +3 +3 +132 -1 -3 0Table 1: Variable coe�cients

more so than similar linear programming prob-lems. A consequence of this is that there isgreater scope for improving the formulation ofIPs so that the search space becomes moretractable.The basic model above, in the course of �nd-ing a solution, has a larger search space thanis really necessary because of the binary natureof the variables, even in cases where they aree�ectively interchangeable. For the example inFigure 1, p21 and p31 are interchangeable at thelevel of numeric abstraction used in the model,in the sense that the e�ect of either on the text interms of the objective function and all the con-straints will be the same. These two variablescan thus be aggregated into a single integer vari-able with range [0,2].The binary-only formulation will in generalhave a larger search space: part of the search isdevoted to �nding equivalent optimal solutions(in the example, p21 = 0 and p31 = 1 as againstp21 = 1 and p31 = 0). In e�ect, the additionalsearch is used to �nd the ordering of solutions.This kind of symmetry of solutions is unde-sirable, and there has been much recent workon symmetry breaking in constraint satisfactionprogramming (see, for example, Joslin and Roy,1997), in order to produce formulations withsmaller search spaces. Such work has been inproblems such as scheduling and planning; therest of this paper looks at taking advantage offeatures of textual paraphrases to produce bet-ter formulations of RP models.4.1 Aggregating variablesAt any particular point at which a paraphraseis possible in text, there are often a number ofvariants of one particular paraphrase type thatcan be applied. One type of variance for a par-ticular paraphrase is in the choice of referringexpression. So, for example, for the type of para-phrase that involves splitting o� a noun post-modi�er and forming a separate sentence (as in(2)), there are a number of paraphrase variantsdepending on the chosen referring expression.(2) a. He desperately wanted the brown corduroyjacket worn by the model.b. He desperately wanted the brown corduroyjacket. X was worn by the model.

In this paraphrase (2), for example, there area number of alternatives for X: the pronoun it,or some more speci�c NP (the jacket, the brownjacket, the corduroy jacket, the brown corduroyjacket)3. This leads to, for (2), four variantsof the post-modifying paraphrase, all with sim-ilar properties in terms of constraint equationsand objective function. This can be viewed as asingle variable with coe�cients that can also bevaried to a limited extent.Let a variable's c-set be de�ned as the set ofits coe�cients across all constraints. The c-setfor the paraphrase of (2), using the equations ofSection 3.1, is then f2 + Y; 2 + Y � k2; 1 � (2 +Y)k3g, with 0 � Y � 3. From the discussion inthe previous section, it would seem desirable touse the variants which allow aggregation of vari-ables; this should produce a smaller total searchspace. However, even though the total spaceof solutions will be smaller when the aggregablevariant is chosen|for the example, 12 solutionsas against 16|it may not be the case that thespace is smaller when search pruning techniques,such as branch-and-bound, are used. Addition-ally, the search size may depend on the way inwhich the aggregation is carried out. The follow-ing sections consider an experiment to test theidea that aggregable variants do have smallersearch spaces; investigate two algorithms for ag-gregating variables; and then discuss the resultsof the experiment.4.2 Comparing ModelsThe aim of the experiment is to test whetherthere is a signi�cant di�erence in the size of thesearch space between a formulation where thereis no aggregation of variables, and two alterna-tive formulations where paraphrase variants areused such that aggregation of variables can becarried out.To do this, binary variable IP problems wererandomly generated in the following manner.An initial problem was generated with an objec-tive function and one constraint, of size 100 vari-3There are, of course, many other possible referringexpressions if lexical changes are allowed|for example,the piece of clothing|but in this paper, only syntacticparaphrases are considered.

ables. Each variable had coe�cients randomlygenerated from a uniform distribution with therange [-10,10]; the constraint had equal chanceof being � or �, and the constraint constantwas generated from a uniform distribution withlower limit zero and upper limit equal to thesum of the variable coe�cients. Each coe�cientalso had associated with it a maximum exi-bility representing the extent to which it couldvary; this value was generated from a uniformdistribution with the range [0,3]. This was thenrepeated with 2 and 3 constraints, with initialnumber of variables 400 and 2000 respectively.Then, the variables were aggregated togetherusing two di�erent algorithms, pole and bal-ance. The algorithms vary the coe�cientswhere possible, choose a paraphrase variantwhose c-set, for a particular referring expression,matches the c-set of at least one �xed-coe�cienttarget variable, and aggregate those two vari-ables together. The di�erence between the al-gorithms is that, when faced with a choice be-tween target variables, pole chooses the onewith the largest range (i.e., the one compris-ing the most aggregated variables) while bal-ance chooses the one with the smallest range.Any problems where the two algorithms gave thesame aggregations were discarded for the pur-poses of di�erentiating between the two.In order to construct problems that could besolved within a reasonable time, subproblemswere extracted from these randomly generatedproblems: only those variables which took partin the aggregation (under either algorithm) wereincluded in the subproblem. These subprob-lems then had an average of around 21 variables.The subproblems in the three formulations|the default no-aggregation, aggregation usingthe pole algorithm, and aggregation using thebalance algorithm|were then solved using abranch-and-bound technique.4.3 ResultsThe mean search space sizes (in number ofnodes) and their standard deviations are shownin Table 2. Sample sizes are 1493, 421 and 44.44The sample sizes are unusual as the problems wherethe pole and balance formulations were the same were

mean std. dev.one default 910.09 3616.7constraint pole 371.22 1792.8balance 381.48 2037.4two default 201.45 1435.5constraints pole 21.76 72.7three default 2232.0 6682.7constraints pole 192.23 341.0Table 2: Comparing search sizes of algorithmsIt is clear that hypothesis tests assuming thenormal distribution are not likely to be appro-priate for testing di�erence between means|thedistributions are very skewed, with standard de-viations much larger than the mean, and all val-ues positive|so the non-parametric Wilcoxonpaired sign-rank test was used for comparison.For one constraint, the algorithms were pair-wise compared: taking as the null hypothesisthat the means were equal, the probabilities thatthis was the case were 1:18 � 10�5 (default vs.pole), 1:07 � 10�4 (default vs. balance), and1:26 � 10�4 (pole vs. balance). For twoand three constraints, only pole (the better ofthe two algorithms) and the default were com-pared, giving probabilities of 1:74 � 10�21 and7:63 � 10�5 respectively.4.4 DiscussionThe aggregate formulations are clearly signi�-cantly better than the default formulation interms of expected search space size. As well, theaggregate formulations have a more predictablesearch size (a substantially smaller standard de-viation), which is also desirable.A preliminary look at applying the techniqueto an actual text produces similar results. A12-sentence text was taken from The AtlanticMonthly, with 19 possible paraphrases for thetext, and length and readability constraints set.Setting k1 (length change) at 0, and varying k2(average sentence length) between 15 and 20, thesearch space for the pole algorithm was alwaysthe same size as or smaller than for the defaultby the same order of magnitude as for the ran-domly generated data. One di�erence betweenthe actual text and the experimental data is thatthe coe�cients for actual text paraphrases arediscarded.

not independent, unlike the randomly generatedexperimental examples. This meant that therewere more aggregations than expected. Lookingat how likely aggregations are to occur in actualtext|as opposed to investigating how e�ectivethey are in cutting search space sizes, the aimof this paper|is future work.Relating this to other work, there are paral-lels here with the concept of approximate sym-metry (Ellman, 1993): the variants of a partic-ular paraphrase are all close to each other (asreferring expressions in general only vary to asmall extent in syntactic paraphrasing), and cannaturally be grouped into disjoint sets, one setper paraphrase type. However, the sets of para-phrase variants do not have the required entail-ments for Ellman's approximate symmetry.Formulating the paraphrase problem as anIP allows an easy translation to using heuris-tic search methods. Genetic Algorithms (GAs)require encoding the problem as a `chromoso-mal' string, which, given the formulation here,is merely the concatenation of the decision vari-ables; crossover and mutation occur betweenand on these strings. Similarly, in SimulatedAnnealing (SA) the decision variables form thestate of the annealing. The process of aggrega-tion described in this paper complements, ratherthan attempts to replace, such heuristic meth-ods. GAs and SA reduce search time by apply-ing heuristics to the process of moving aroundthe search space. However, the models them-selves are the same size in terms of numberof variables, with just the solution space navi-gated di�erently. Aggregation reduces the sizeof the model, in a way related to factor analy-sis (see Biber, 1988), by compressing variables.Both approaches can thus be used together, ag-gregation decreasing the number of variables,and GAs and SA heuristically navigating thealready-reduced search space.5 ConclusionExisting systems dealing with paraphrase onlylook at constraints at the level of sentences orclauses. The search strategies they use are ade-quate for this scale of paraphrase; however, this

is not the case where the problem is the realworld situation of external constraints imposedon an entire text, particularly for industrial-sized applications. This paper has looked ata computational model of paraphrase for entiretexts that can use optimisation techniques to cutthe size of the search space to make the problemfeasible. It then proposed a re�nement of themodel using ideas related to symmetry break-ing to reduce the size of the model and hence tocut the search space further: aggregating para-phrases that, at the level of abstraction usedfor the model, can be made interchangeable byvarying referring expressions or other aspects ofparticular paraphrase types. Simulations thencon�rmed that the model using aggregated para-phrases has a signi�cantly smaller mean searchspace, and also a signi�cantly smaller varianceof search space size, than the basic model.ReferencesBeale, S. 1997. Using Branch-and-Bound with Con-straint Satisfaction in Optimization Problems. Proc.of AAAI97, 209{214.Biber, D. 1988. Variation Across Speech and Writing.Cambridge Univ. Press. Cambridge, UK.Dras, M. 1997. Reluctant Paraphrase: Textual Restruc-turing under an Optimisation Model Proc. of Pa-cLing97, 98{104.Dras, M. 1997. Representing Paraphrases Using STAGs.Proc. of ACL-EACL97, 516{518.Ellman, T. 1993. Abstraction via Approximate Symme-try. Proc. of the 13th IJCAI, 916{921.Inui, K., T. Tokunaga and H. Tanaka. 1992. Text Re-vision: A Model and its Implementation. Proc. 6thInternat. Workshop on NLG, 215{230.Jordan, M. 1994. Toward Plain Language: A Guide toParaphrasing Complex Noun Phrases. J. of TechnicalWriting and Communication, 24(1), 77{96.Joshi, A., L. Levy and M. Takahashi. 1975. Tree Ad-junct Grammars. J. of Computer and System Sci-ences, 10(1).Joslin, D. and A. Roy. 1997. Exploiting Symmetry inLifted CSPs. Proc. of AAAI97, 197{202.Kieras, D. 1990. The Computerized ComprehensibilitySystem Maintainer's Guide. Michigan Univ. Rpt. 33.Klare, G. 1974{75. Assessing Readability. Reading Re-search Quarterly, Number 1, 1974{1975, 62{102.Nemhauser, G. and L. Wolsey. 1988. Integer and Com-binatorial Optimization. Wiley & Sons. NY, NY.Robin, J. 1994. Revision-Based Generation of Natu-ral Language Summaries Providing Historical Back-ground. Columbia Univ. Report CUCS-034-94.Williams, H.P. 1995. Model Building in MathematicalProgramming. Wiley and Sons. Chichester, UK.

