Search in Constraint-Based Paraphrasing

Mark Dras
Microsoft Research Institute, Macquarie University
Sydney NSW Australia 2109
markd@mpce.mq.edu.au

Abstract

Existing paraphrase systems either create suc-
cessive drafts from an underlying representa-
tion, or they aim to correct texts. A different
kind of paraphrase, also reflecting a real-world
task, involves imposing, on an original text,
external constraints in terms of length, read-
ability, etc. This sort of paraphrase requires a
new framework which allows production of a
new text satisfying the constraints, but with
minimal change from the original. In order
for such a system to be feasible when used
on a large scale, searching the space of candi-
date solution texts has to be made tractable.
This paper examines a method for pruning the
search space via branch-and-bound, evaluates
three variants to find the most efficient model,
and discusses its relation to standard heuristic

methods such as genetic algorithms.

1 Introduction

The paraphrasing framework of this paper is one
where a text is modified ‘reluctantly’ to conform
to external surface constraints, such as length
or readability requirements (see, for example,
Dras, 1997a). This reluctant paraphrase (RP)
paradigm can best be defined by contrasting it
with the remedial sort of paraphrases suggested
by style checkers or in style guides. The start-
ing point under this remedial style of paraphrase
is an imperfect text which has to be corrected,
the corrections being determined by, for exam-
ple, advice to make the text “more active”; ex-
amples of systems that implement this notion
of paraphrase are the CCS system of Kieras
(1990) used by the US military, or the grammar
checkers found in word processors. In contrast,

imagine the completion of an ideal document
which says exactly what the author intends, but
which must be changed to satisfy external sur-
face constraints. These constraints might be a
requirement to cut down an academic paper by
one page for conference publication; or to make
a technical document conform to house style
readability requirements; or some combination
of these or other sorts of external constraints.
Thus, the text has to be paraphrased, albeit re-
luctantly, in order to meet these requirements,
and this paper describes the beginnings of a new
model required to handle this sort of paraphrase.

There are existing Natural Language Process-
ing systems which already deal with surface con-
straints on text. Most of these are natural lan-
guage generation (NLG) systems, and fall within
the field of revision-based generation: WEIVER
(Inui et al, 1992) and STREAK (Robin, 1994) are
two such systems. In these systems, draft texts
are produced, criticised, and then paraphrased'
to produce a text that fits certain constraints.
However, in these systems the constraints are
local to a small unit of text, generally a sen-
tence. For example, STREAK has a constraint
that prevents sentences from being longer than
46 words, whereas in the model of this paper the
constraints are applied to a whole multi-sentence
text. One approach taken by these Natural Lan-
guage Generation systems is to revise the text
a step at a time, adding new information un-
til just before the constraints would be violated
(as STREAK does); in STREAK’s approach, once

!The concept of paraphrase in these systems is some-
what different from the one used in this paper: once
a draft is critiqued, a ‘paraphrase’ (textual variant) is
re-generated from some underlying representation. In
this paper a paraphrase is a direct text-to-text syntac-
tic mapping.

a choice to add information has been made, it
cannot be revoked. Another approach is to see
if the text has already violated constraints, and
if so to rewrite it (as WEIVER does); a history
of rewritings is kept so that there will not be
an infinite series of paraphrasings. These ap-
proaches work well for small, sentence-scale text,
but become problematic when the search space
is larger than for sentences. For instance, under
a greedy locally-optimal choosing scheme such
as that of STREAK, it is possible that a globally
optimal choice of additions could be missed, or
that in fact no solution could be found.? The al-
ternative of WEIVER, keeping a history, is equiv-
alent to explicitly enumerating all paraphrase
alternatives; when the history gets large (again,
not a problem for small, sentence-scale text) this
leads to a very large search space with the simple
backtrack search of WEIVER.

Applying global constraints to an entire text
requires a different model, one which allows an
efficient search of the space of solutions, given
that it is much larger. Mathematical optimi-
sation techniques have been used for the pur-
pose of reducing search space sizes in areas such
as scheduling and planning, and also, in Nat-
ural Language Processing, in semantic parsing
(Beale, 1996). This paper takes a basic model
of RP under an optimisation framework (Dras,
1997a) and develops it further. The model has
three components: a set of paraphrases which
is used to achieve the overall text modification;
a set of constraints to which the text must ad-
here after the modification; and an effect—that
of the change to the text caused by the para-
phrases applied—which is to be minimised. This
paper looks at a method for producing a more
efficient formulation of the basic model. The fol-
lowing sections describe the components of the
model—the constraints, the paraphrases, and
the global effects they have on a text; a basic
mathematical model for describing the interac-

’In STREAK, given that information-adding is op-
tional, this is not too much of a problem; but, when
modifying an entire text, if the constraints compel some
change to the text (like shortening the total length),
STREAK’S greedy heuristic would commit to a choice
before globally evaluating combinations of alternatives,
which can be problematic.

tion of these; two more refined models; exper-
imental work comparing the three models; and
a discussion of how these models could interact
with standard heuristic techniques like genetic
algorithms.

2 Components of the Model

2.1 Textual Constraints

This section outlines three measures of text,
those of length, readability and lexical density.
These measures are often used in the production
of text; their numeric quality makes them par-
ticularly amenable to the optimisation models
of this paper. See also Dras (1997a).

Length is the simplest measure, and is fre-
quently used in practice as a constraint. For
example, imposing a word limit on a text is
standard for academic conferences, and meet-
ing this constraint often involves cutting down
a longer draft version. Constraining text length
is also a feature of computational language gen-
eration systems, for instance as an explicit limit
on the length of an individual text unit, as in
the STREAK system (Robin, 1994).

Another common measure comes from read-
ability formulae, such as the Flesch Reading
Ease Score (Klare, 1974-5). Standard readabil-
ity formulae are equations which attempt to pre-
dict, rather than evaluate, the readability of
text; in form they are generally linear combina-
tions of factors which correlate with text com-
plexity, such as average sentence length. Al-
though readability formulae are controversial
their use here as a constraint can be defended
on practical grounds: readability formulae are
used as criteria for writing public documents in
the US, such as insurance policies and other con-
tracts; for producing military or software docu-
mentation; and so on. In these situations the use
of readability formulae is mandatory; so for a
system which models actual constraints on text,
using the formulae as a constraint is reasonable.

Lexical density is a textual measure that at-
tempts to capture the ‘condensedness’ of text
by measuring the proportion of non-content (or
function) words to total text. This idea of den-
sity has been used to distinguish between writ-

ten and spoken forms of language: written lan-
guage tends to be more dense than spoken. The
concept is also useful in the context of this pa-
per’s optimisation model to prevent excessive
text compression, and as a constraint counter-
balancing the readability one. Under a typical
readability formula, the formula value can be
improved by the sort of paraphrases which com-
press text; a lexical density constraint can pre-
vent too much of this.

2.2 Paraphrases

Within RP, individual paraphrases are just
broad-coverage tools, used to adjust a text,
rather than the corrective devices of remedial
paraphrases. Hence the most appropriate para-
phrases for this work are ones that are syntac-
tic in nature, as they apply to a wide range of
texts; see Dras (1997a) for more detail about the
sources and subtypes of paraphrases. An exam-
ple of this type is the splitting off of a noun post-
modifier to form a separate sentence in the map-
ping from Sarah eyed the page filled with bizarre
linguistic phenomena. to Sarah eyed the page.
It was filled with bizarre linguistic phenomena.
These paraphrases will cause some change
to the text in terms of the constraints de-
scribed in Section 2.1. These changes are
fairly straightforward—changes to the number
of words in the text, the average number of
words per sentence, and so on; the exact way
in which this occurs is described in Section 3.1.
Under RP, any change effected by a para-
phrase is taken to be a negative (that is, un-
desirable) one, moving the text away from the
author’s intended meaning. Developing an op-
timisation model thus requires a quantification
of the effects that imposing a paraphrase on a
text will have on that text. The definition of
such an objective function minimising the ef-
fect of paraphrases, in terms of truth-conditional
meaning and information structure, is also de-
scribed in Dras (1997a). For a computational
paraphrase system a formal specification of the
paraphrases is also needed; this is done within
the representation formalism based on Tree Ad-
joining Grammars (Joshi et al, 1975) described
in Dras (1997b); however, an informal descrip-

tion is adequate here for discussion of the para-
phrase effects and their inclusion into the opti-
misation model.

3 An Optimisation Approach

This section presents a mathematical optimisa-
tion model of paraphrasing. The basic tech-
niques are those of integer programming (see,
e.g., Nemhauser and Wolsey, 1988), which de-
scribes the constraints and function to be min-
imised in terms of linear combinations of integer
variables. The integer programming approach is
useful because it provides a set of techniques for
finding an optimal solution, and heuristics for
pruning the search space. After a formal pre-
sentation of a basic model, an example is given
for clarification.

3.1 A Basic Model

In developing an optimisation model, it is first
necessary to identify the DECISION VARIABLES:
that is, those factors about which a decision is
to be made. In this case, it is the paraphrase
mappings: for each paraphrase, the decision is
whether this paraphrase should be applied to
the text to move it towards satisfying the con-
straints while minimally perturbing the text. In
this situation, the choice is binary, whether or
not to apply the paraphrase. Given this, the

decision variables are
pij = 0/1 variable representing the jth

paraphrase for sentence 4
The OBJECTIVE FUNCTION, the function to be
optimised, is, for RP, a measure of the change
to the text. With ¢;; being the effect (or cost)
of each paraphrase, if applied, this function has
the form

z = Z Cij-Dij

Expressed mathematically, the length con-
straint is

Z wij.pij < k1
where w;; is change to length of sentence 4
caused by paraphrase ij and kq is required
change to the length of text in words (k1 < 0).
A simplified readability constraint using only
the average sentence length component, is

W+ wijpij ko

S+ 2 sij.pij
That is,

Z(wi]‘ — k2.8i5)pij < koS — W
where s;; is change to number of sentences in
the text by paraphrase ij, W is total words in
original text, S is total sentences in original text,
and ko is required average sentence length (ko >
0).

The lexical density constraint requires the
proportion of function words (taken here to be
all closed class words) to total words to be
greater than some constant value. Analogously
to the readability constraint, this is

> (fij — ksawij)pi; > ksW — F

where f;; is change to number of function words
caused by paraphrase ij, F' is total number of
function words in original text, and k3 is re-
quired proportion of function words to total
words (0 < k3 < 1).

Given that there are n; paraphrases for sen-
tence 4, there is a potential conflict for the para-
phrases. To simplify their application, an extra
constraint is added, stating that there can be at
most one paraphrase for each sentence:

sz’j <1
J

An example is presented in the next section,
to illustrate the model. The small size of this ex-
ample does not allow a real demonstration of the
usefulness of the approach, since the problem
can be solved almost by inspection. However, in
larger problems this method of modelling allows
the use of techniques such as branch-and-bound
(Nemhauser and Wolsey, 1988) which make the
solution of the problem feasible, where the solu-
tion would otherwise be impractical because of
the problem’s exponential complexity.

3.2 An Example

As an example, take the short text:

The cat sat on the mat which was by the door.
It ate the cream ladled out by its owner. The
owner, an eminent engineer, had a convertible
used in a bank robbery.

minimise

z = c11p11 + c21p21 + C31P31 + C32P32

given
— 2p11 + 3p2r + 3par — 3pz2 < 0
— 2p11 — Tp21 — Tpa1 — 3p32 < -3
— 0.95p11+ 1.43p21+ 1.43psi+ 0.58p32> 0.33
P31 + p32 < 1

Figure 1: Pure binary variable formulation

The values of F/, W and S are 17, 33 and 3
respectively.

Possible paraphrases of individual sentences,
using just relative pronoun deletion, post-
modifier split, and parenthetical deletion, are:

(1) p11- The cat sat on the mat by the door.

p21. It ate the cream. It had been ladled out
by its owner.

ps1. The owner, an eminent engineer, had a
convertible. It had been used in a bank
robbery.

ps2. The owner had a convertible used in a
bank robbery.

This gives decision variables and associated
coefficients as in Table 1. For the example,
the constraint values are (arbitrarily) chosen as
k1 = 0 (at worst no compression of text length),
ko = 10 (average sentence length no greater than
10), and k3 = 0.525 (function words no less than
52.5% of the text). The basic integer program-
ming (IP) formulation is then given in Figure 1.

There are two alternatives which are feasible
solutions, with either three variables zero and
p32 = 1, or three variables one and p3; = 0.
This gives two values for the objective function,
z = c32 and z = ¢11 + co1 + c33. Since under
the RP assumption all changes involve a positive
cost, the best alternative is the first, with only
the second paraphrase for sentence number three
being applied. The resulting text is then as the
original with an eminent engineer deleted.

4 Refining the Basic Model

It is well-known (Williams, 1995) that IP prob-
lems have many different formulations, much

paraphrase Z] fij Wij Sij
11 -2 -2 0
21 +3 | +3 | +1
31 +3 | +3 | +1
32 -1 -3 0

Table 1: Variable coefficients

more so than similar linear programming prob-
lems. A consequence of this is that there is
greater scope for improving the formulation of
IPs so that the search space becomes more
tractable.

The basic model above, in the course of find-
ing a solution, has a larger search space than
is really necessary because of the binary nature
of the variables, even in cases where they are
effectively interchangeable. For the example in
Figure 1, po1 and p3; are interchangeable at the
level of numeric abstraction used in the model,
in the sense that the effect of either on the text in
terms of the objective function and all the con-
straints will be the same. These two variables
can thus be aggregated into a single integer vari-
able with range [0,2].

The binary-only formulation will in general
have a larger search space: part of the search is
devoted to finding equivalent optimal solutions
(in the example, poy = 0 and p3; = 1 as against
p21 = 1 and p3; = 0). In effect, the additional
search is used to find the ordering of solutions.

This kind of symmetry of solutions is unde-
sirable, and there has been much recent work
on symmetry breaking in constraint satisfaction
programming (see, for example, Joslin and Roy,
1997), in order to produce formulations with
smaller search spaces. Such work has been in
problems such as scheduling and planning; the
rest of this paper looks at taking advantage of
features of textual paraphrases to produce bet-
ter formulations of RP models.

4.1 Aggregating variables

At any particular point at which a paraphrase
is possible in text, there are often a number of
variants of one particular paraphrase type that
can be applied. One type of variance for a par-
ticular paraphrase is in the choice of referring
expression. So, for example, for the type of para-
phrase that involves splitting off a noun post-
modifier and forming a separate sentence (as in
(2)), there are a number of paraphrase variants
depending on the chosen referring expression.

(2) a. He desperately wanted the brown corduroy

jacket worn by the model.

b. He desperately wanted the brown corduroy
jacket. X was worn by the model.

In this paraphrase (2), for example, there are
a number of alternatives for X: the pronoun it,
or some more specific NP (the jacket, the brown
jacket, the corduroy jacket, the brown corduroy
jacket)®. This leads to, for (2), four variants
of the post-modifying paraphrase, all with sim-
ilar properties in terms of constraint equations
and objective function. This can be viewed as a
single variable with coefficients that can also be
varied to a limited extent.

Let a variable’s C-SET be defined as the set of
its coefficients across all constraints. The c-set
for the paraphrase of (2), using the equations of
Section 3.1, is then {2+ Y,24+Y — ko, 1 — (2 +
Y)ks}, with 0 <Y < 3. From the discussion in
the previous section, it would seem desirable to
use the variants which allow aggregation of vari-
ables; this should produce a smaller total search
space. However, even though the total space
of solutions will be smaller when the aggregable
variant is chosen—for the example, 12 solutions
as against 16—it may not be the case that the
space is smaller when search pruning techniques,
such as branch-and-bound, are used. Addition-
ally, the search size may depend on the way in
which the aggregation is carried out. The follow-
ing sections consider an experiment to test the
idea that aggregable variants do have smaller
search spaces; investigate two algorithms for ag-
gregating variables; and then discuss the results
of the experiment.

4.2 Comparing Models

The aim of the experiment is to test whether
there is a significant difference in the size of the
search space between a formulation where there
is no aggregation of variables, and two alterna-
tive formulations where paraphrase variants are
used such that aggregation of variables can be
carried out.

To do this, binary variable IP problems were
randomly generated in the following manner.
An initial problem was generated with an objec-
tive function and one constraint, of size 100 vari-

3There are, of course, many other possible referring
expressions if lexical changes are allowed—for example,
the piece of clothing—but in this paper, only syntactic
paraphrases are considered.

ables. Each variable had coefficients randomly
generated from a uniform distribution with the
range [-10,10]; the constraint had equal chance
of being < or >, and the constraint constant
was generated from a uniform distribution with
lower limit zero and upper limit equal to the
sum of the variable coefficients. Each coefficient
also had associated with it a maximum flexi-
bility representing the extent to which it could
vary; this value was generated from a uniform
distribution with the range [0,3]. This was then
repeated with 2 and 3 constraints, with initial
number of variables 400 and 2000 respectively.

Then, the variables were aggregated together
using two different algorithms, POLE and BAL-
ANCE. The algorithms vary the coefficients
where possible, choose a paraphrase variant
whose c-set, for a particular referring expression,
matches the c-set of at least one fixed-coefficient
TARGET variable, and aggregate those two vari-
ables together. The difference between the al-
gorithms is that, when faced with a choice be-
tween target variables, POLE chooses the one
with the largest range (i.e., the one compris-
ing the most aggregated variables) while BAL-
ANCE chooses the one with the smallest range.
Any problems where the two algorithms gave the
same aggregations were discarded for the pur-
poses of differentiating between the two.

In order to construct problems that could be
solved within a reasonable time, subproblems
were extracted from these randomly generated
problems: only those variables which took part
in the aggregation (under either algorithm) were
included in the subproblem. These subprob-
lems then had an average of around 21 variables.
The subproblems in the three formulations—
the default no-aggregation, aggregation using
the POLE algorithm, and aggregation using the
BALANCE algorithm—were then solved using a
branch-and-bound technique.

4.3 Results

The mean search space sizes (in number of
nodes) and their standard deviations are shown
in Table 2. Sample sizes are 1493, 421 and 44.*

4The sample sizes are unusual as the problems where
the POLE and BALANCE formulations were the same were

| | mean [std. dev. |

one default 910.09 3616.7
constraint POLE 371.22 1792.8
BALANCE | 381.48 2037.4
two default 201.45 1435.5
constraints | POLE 21.76 72.7
three default 2232.0 6682.7
constraints | POLE 192.23 341.0

Table 2: Comparing search sizes of algorithms

It is clear that hypothesis tests assuming the
normal distribution are not likely to be appro-
priate for testing difference between means—the
distributions are very skewed, with standard de-
viations much larger than the mean, and all val-
ues positive—so the non-parametric Wilcoxon
paired sign-rank test was used for comparison.
For one constraint, the algorithms were pair-
wise compared: taking as the null hypothesis
that the means were equal, the probabilities that
this was the case were 1.18 x 10~° (default vs.
POLE), 1.07 x 10™* (default vs. BALANCE), and
1.26 x 107* (POLE vs. BALANCE). For two
and three constraints, only POLE (the better of
the two algorithms) and the default were com-
pared, giving probabilities of 1.74 x 1072! and
7.63 x 1077 respectively.

4.4 Discussion

The aggregate formulations are clearly signifi-
cantly better than the default formulation in
terms of expected search space size. As well, the
aggregate formulations have a more predictable
search size (a substantially smaller standard de-
viation), which is also desirable.

A preliminary look at applying the technique
to an actual text produces similar results. A
12-sentence text was taken from The Atlantic
Monthly, with 19 possible paraphrases for the
text, and length and readability constraints set.
Setting k1 (length change) at 0, and varying k2
(average sentence length) between 15 and 20, the
search space for the POLE algorithm was always
the same size as or smaller than for the default
by the same order of magnitude as for the ran-
domly generated data. One difference between
the actual text and the experimental data is that
the coefficients for actual text paraphrases are

discarded.

not independent, unlike the randomly generated
experimental examples. This meant that there
were more aggregations than expected. Looking
at how likely aggregations are to occur in actual
text—as opposed to investigating how effective
they are in cutting search space sizes, the aim
of this paper—is future work.

Relating this to other work, there are paral-
lels here with the concept of approximate sym-
metry (Ellman, 1993): the variants of a partic-
ular paraphrase are all close to each other (as
referring expressions in general only vary to a
small extent in syntactic paraphrasing), and can
naturally be grouped into disjoint sets, one set
per paraphrase type. However, the sets of para-
phrase variants do not have the required entail-
ments for Ellman’s approximate symmetry.

Formulating the paraphrase problem as an
IP allows an easy translation to using heuris-
tic search methods. Genetic Algorithms (GAs)
require encoding the problem as a ‘chromoso-
mal’ string, which, given the formulation here,
is merely the concatenation of the decision vari-
ables; crossover and mutation occur between
and on these strings. Similarly, in Simulated
Annealing (SA) the decision variables form the
state of the annealing. The process of aggrega-
tion described in this paper complements, rather
than attempts to replace, such heuristic meth-
ods. GAs and SA reduce search time by apply-
ing heuristics to the process of moving around
the search space. However, the models them-
selves are the same size in terms of number
of variables, with just the solution space navi-
gated differently. Aggregation reduces the size
of the model, in a way related to factor analy-
sis (see Biber, 1988), by compressing variables.
Both approaches can thus be used together, ag-
gregation decreasing the number of variables,
and GAs and SA heuristically navigating the
already-reduced search space.

5 Conclusion

Existing systems dealing with paraphrase only
look at constraints at the level of sentences or
clauses. The search strategies they use are ade-
quate for this scale of paraphrase; however, this

is not the case where the problem is the real
world situation of external constraints imposed
on an entire text, particularly for industrial-
sized applications. This paper has looked at
a computational model of paraphrase for entire
texts that can use optimisation techniques to cut
the size of the search space to make the problem
feasible. It then proposed a refinement of the
model using ideas related to symmetry break-
ing to reduce the size of the model and hence to
cut the search space further: aggregating para-
phrases that, at the level of abstraction used
for the model, can be made interchangeable by
varying referring expressions or other aspects of
particular paraphrase types. Simulations then
confirmed that the model using aggregated para-
phrases has a significantly smaller mean search
space, and also a significantly smaller variance
of search space size, than the basic model.

References

Beale, S. 1997. Using Branch-and-Bound with Con-
straint Satisfaction in Optimization Problems. Proc.
of AAATI97, 209-214.

Biber, D. 1988. Variation Across Speech and Writing.
Cambridge Univ. Press. Cambridge, UK.

Dras, M. 1997. Reluctant Paraphrase: Textual Restruc-
turing under an Optimisation Model Proc. of Pa-
cLing97, 98-104.

Dras, M. 1997. Representing Paraphrases Using STAGs.
Proc. of ACL-EACL97, 516-518.

Ellman, T. 1993. Abstraction via Approximate Symme-
try. Proc. of the 13th IJCAI 916-921.

Inui, K., T. Tokunaga and H. Tanaka. 1992. Text Re-
vision: A Model and its Implementation. Proc. 6th
Internat. Workshop on NLG, 215-230.

Jordan, M. 1994. Toward Plain Language: A Guide to
Paraphrasing Complex Noun Phrases. J. of Technical
Writing and Communication, 24(1), T7-96.

Joshi, A.) L. Levy and M. Takahashi. 1975. Tree Ad-
junct Grammars. J. of Computer and System Sci-
ences, 10(1).

Joslin, D. and A. Roy. 1997. Exploiting Symmetry in
Lifted CSPs. Proc. of AAAI97, 197-202.

Kieras, D. 1990. The Computerized Comprehensibility
System Maintainer’s Guide. Michigan Univ. Rpt. 33.

Klare, G. 1974-75. Assessing Readability. Reading Re-
search Quarterly, Number 1, 1974—1975, 62-102.

Nemhauser, G. and L. Wolsey. 1988. Integer and Com-
binatorial Optimization. Wiley & Sons. NY, NY.

Robin, J. 1994. Rewision-Based Generation of Natu-
ral Language Summaries Providing Historical Back-
ground. Columbia Univ. Report CUCS-034-94.

Williams, H.P. 1995. Model Building in Mathematical
Programming. Wiley and Sons. Chichester, UK.

