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Abstract

In abstract-like summarisation, extracted
sentences containing key content are of-
ten revised to improve the coherence of
the overall summary. In this work, we
consider the task of Global Revision, in
which a key sentence is revised and sup-
plemented with additional content from
the original document. Specifically, this
task comprises two subtasks: selecting
content; and grammatically ordering con-
tent, the focus of this paper. Using sta-
tistical dependency models, we search for
a Maximal Spanning (Dependency) Tree
that structures recycled words and phrases
to form a novel sentence. Combining a
modified version of Prim’s algorithm with
a four-gram language model, we evaluated
our system on a sentence regeneration task
obtaining Bleu scores of .30, a statistically
significant improvement above the base-
line.

1 Introduction

Faced with a seemingly endless supply of online
textual information, it is often difficult to wade
through a sea of documents returned by a search
engine to identify those that are truly relevant to
one’s information need. To address this issue, au-
tomatic text summarisation technology strives to
help provide shortened surrogates of documents
that may be read quickly in order to make such
judgements.

The current state-of-the-art approaches to sum-
marisation simply return a list of extracted sen-
tences. Whilst this is useful for identifying the
gist of the document, this type of summary suf-
fers from certain problems that make it difficult to
glean more specific information about the original
document. Typically, issues arise stemming from

the fact that sentences are extracted in isolation
and out of their original contexts. For example,
an anaphoric reference in the extracted sentence
may be missing the necessary antecedent to allow
proper interpretation.

To combat such limitations, approaches to
abstract-like summarisation often attempt to han-
dle various additional linguistic phenomena in or-
der to assist the reader make sense of the extracted
pieces of information. Such methods range from
accounting for discourse structure to maintain co-
herence (Marcu, 2000), to revising extracted text
for fluency (for example, see Jing and McKeown
(1999)). In this paper, we examine novel methods
for accomplishing the task of revision as a text-to-
text transformation.

Specifically, our overall goal is to perform what
has been described asGlobal Revision(Crem-
mins, 1996). Global revision is the task of sup-
plementing some key sentence, perhaps identified
with a sentence extraction tool, with additional in-
formation from related sentences. These related
sentences from the source document generally lie
within the vicinity of the key sentence in the origi-
nal document. Figure 1 presents such an example.

The summary sentence was written by a pro-
fessional abstractor.1 We hypothesise that it was
composed by the abstractor on the basis of the
three sentences shown below the summary, which
we identified manually in the source document. In
this example, the abstractor has paraphrased and
conjoined the content of the first related sentence
with the key sentence via the discourse marker
while. Additionally, the noun phraseconflict ar-
easreplaces the phraseinaccessible areas. As can
be seen by this example, global revisions tend to
opportunistically recycle words and phrases from

1All text was taken from the United Na-
tions website for Humanitarian Affairs at
http://ochaonline3.un.org/humanitarianappeal/index.htm
.
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Summary Sentence:
There are presently an estimated 130,000 internally displaced
persons (IDPs) in established camps, while it is estimated
that 200,000 people are left behind in conflict areas with
inadequate access to food or shelter.

Main Source Sentence:
There are presently an estimated 130,000 internally displaced
persons (IDPs) in established camps.

Related Source Sentences:
The condition of an estimated 200,000 people left behind in
inaccessible areas with inadequate access to food or shelter
is much worse.

Conditions in conflict areas will worsen as the winter storms
approach.

Figure 1: An example of global revision.

surrounding text where possible.
Broadly speaking, there are two primary tasks.

The first is one of content selection in which, given
a set of key and related sentences, the system must
automatically identify which phrases and words
are important enough to include in the final sen-
tence. Often this is done by ranking words and
phrases by some model of their salience. Mod-
els for content selection have been studied in pre-
vious work on text-to-text summarisation applica-
tions. For example, Witbrock and Mittal (1999)
presented a model for learning how suitable words
from a news article are for inclusion in headlines,
or ‘ultra-summaries’. In Wan et al. (2003), we
presented models akin to that of latent semantic
analysis for content selection in which words re-
lated to a single main theme were more likely to
be selected for inclusion in a summary. Wan et al.
(2005) presented methods aimed at recycling de-
pendency relations from the original document, in-
fluencing which words are selected for inclusion in
the generated summary.

In this paper, we hold the content selection fac-
tor constant and assume that one of the content
models described above will be employed to rank
words and phrases according to their importance.
Here, we focus on the second part of the genera-
tion problem: namely, that of generating the final
ordering of any highly ranked words and phrases.
Essentially, the problem becomes one of choosing
between the possible combinations of the selected
strings, be they words or phrases.

Our baseline approach uses ann-gram language
model to find the best ordering of words. At a lo-
cal level, short generated sequences do indeed tend

to look like valid word sequences. However, at
a global sentence level,n-gram generation has no
mechanisms to ensure that the sequence is well-
formed enough to be grammatical. For example,
there is no guarantee that the generated sequence
will contain a verb, so it may not even correspond
to a sentence.

To address this issue, we present a new method
for combining the strengths of ann-gram language
model (in this paper, we use four-gram models)
with a statistical dependency model. Our hope is
that grammaticality will be improved by including
representations of global sentence structure during
a search through different word orders. Our ap-
proach is to order an input set of strings (the re-
cycled words and phrases) by attempting to con-
struct a dependency tree that links these strings.
This tree is built using a statistical model of de-
pendency relations that is automatically obtained
from the Penn Treebank (Marcus et al., 1994).

Our focus in this paper is to describe modifica-
tions to Prim’s algorithm (Prim, 1957) for finding
the maximal spanning tree, which we use to find
the best dependency tree. Ann-gram model is then
used to find the best order of sibling nodes in the
dependency tree when generating the string yield.

In the remainder of this paper, we begin by con-
trasting our approach to related work in Section
2. We discuss the Maximum Spanning Tree prob-
lem in more depth in Section 3, which presents our
use of Prim’s algorithm. In Section 4, we describe
additional constraints to ensure that the generated
tree is a dependency tree. Section 5 describes how
to get the final word order once a spanning tree is
found. Finally, before we conclude, our prelim-
inary evaluations on the Wall Street Journal sec-
tions of the Penn Treebank are presented in Sec-
tion 6.

2 Related Work

Because of the statistical nature of our work and
the lack of symbolic representation as input, tra-
ditional text generation (for an overview, see Re-
iter and Dale 2000) is only peripherally related.
Instead, we briefly review work in statistical text
generation and paraphrase generation.

Statistical surface realisers (for example,
Langkilde and Knight 1998; Bangalore and
Rambow 2000) often start with a semantic rep-
resentation for which a specific rendering, an
ordering of words, must be determined. Such sys-
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tems usually rank alternative word orderings using
a language model to select the best sequence. Our
approach blends content selection with surface
realisation. That is, words and phrases will only
be included in the final sentence if a suitable and
natural ordering is possible. In our case, a model
based on corpus statistics allows us to define what
sounds natural.

Our ultimate goal of text-to-text summarisation
is more similar to work on Information Fusion
(Barzilay et al., 1999), a subproblem in multi-
document summarisation. In this work, sen-
tences presenting the same information are ex-
tracted from a set of news articles on the same
news event, each perhaps published by a different
news company. The basic premise of this work is
that what is redundant across sentences is treated
as important and worth reporting to the user. This
in turn can be supplemented by additional non-
repeated information if possible.

At first glance, at least in terms of input and out-
put types (a set of sentences mapped to a single
sentence), the Information Fusion and Global Re-
vision tasks seem identical. In fact, it is the inter-
relationship of the sentences in the input set that
differs between the two problems. Global Revi-
sion can be seen as the related single document
version of Information Fusion. Crucially, the sin-
gle document version does not deliver the same
type of informational redundancy, and so we need
different methods from those used in Information
Fusion.

Other text-to-text approaches to generating
novel sentences also aim to recycle sentence frag-
ments where possible. More recently, work on
phrase-based statistical machine translation has
been applied to paraphrase generation (Bannard
and Callison-Burch, 2005) and summarisation
(Dauḿe III and Marcu, 2004). Whilst related,
such methods benefit from the luxury of paired
corpora in which one can learn automatically the
transformation between the summary and the orig-
inal document. What they do have in common
with this work is a reliance on language modelling,
though predominantly limited ton-gram models.

In this paper, we generate word sequences based
on a dependency tree which we find using Maxi-
mal Spanning Tree algorithms. To our knowledge,
this has not been done for text generation. How-
ever, the relationship between dependency parse
trees and maximal spanning trees has been estab-

lished in discriminative dependency parsing (Mc-
Donald et al., 2005). McDonald et al. specif-
ically examine non-projective dependency trees,
whereas this paper examines only projective ones.
This difference is important in choosing a span-
ning tree algorithm.

Additionally, in parsing, one begins with a fixed
sequence of words and the search is over tree
structures. In contrast, we search for the best word
sequenceand tree structure concurrently, intro-
ducing issues that do not arise in parsing. These
issues, concerning argument counts of words, are
discussed in Section 4.

3 Understanding the Problem

Recall that our input is a set of words and phrases
judged to be salient in content. Our task is to use
as many as possible in a grammatical ordering cor-
responding to the novel summary sentence. To be-
gin with, we preprocess the input strings such that
each is represented by a single token. Phrases are
treated as ‘atomic’ strings that cannot be broken
up further. A phrase is represented by its syn-
tactic head, an annotation that could be obtained
automatically via an initial parse of each phrase.
Drawing from the earlier example, the noun phrase
conflict areaswould thus be represented byareas.
This converts the input from a set of strings of ar-
bitrary length into one of single tokens.

Our approach is to find a dependency tree that
connects the input head tokens. In searching for
the best dependency tree, all possible dependency
relations between pairs of words are considered.
In effect, this collection of possible edges results
in a maximally connected directional graph where
each vertex is a word and edges represent a depen-
dency relationship between the two words.

Edges are directional since it matters which
word is the head and which is the child. Edges also
have automatically calculated weights that repre-
sent the strength of the relation. Thus, an edge that
is seemingly implausible as a dependency relation
will have a low weight. In contrast, an edge rep-
resenting a dependency relation that one observes
frequently receives a high weight.

Finally, in this particular graph of possible de-
pendency relations, we keep track of the relative
ordering of the head and its child: either the head
occurs to the left of the modifier in the word se-
quence, or to the right.

We base our calculations of dependency rela-
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tion strength on the models proposed by Collins
(1996). Our version of the models differs in that
we do not account for distance between head and
modifier words. We define a dependency relation
event as having the following three attributes: the
head token, the word token and its relative order-
ing, which can beleftwardsor rightwards. Thus,
the probability of the relationship for two wordsA
andB in a directionD is defined as follows:

prob(A,B,D) =
cnt(rel(A,B,D))

cnt(co(A,B))

where the frequency of seeing that relation is nor-
malised byco(A,B): the number of times we saw
those words together in a sentence, i.e., a co-
occurrence count.

We can back off to part-of-speech tags in two
stages as Collins describes. The first stage is to
alternate between using the part of speech for one
word in the pairing:

prob1pos(A,B,D) =

cnt(rel(Apos,B,D))+cnt(rel(A,Bpos,D))

cnt(co(Apos,B))+cnt(co(A,Bpos))

The final backoff stage is to use only parts-of-
speech:

prob2pos(A,B,D) =
cnt(rel(Apos,Bpos,D))

cnt(co(Apos,Bpos))

A combination of these backoff probabilities is
done linearly:

probbackoff1=

λ1×prob(A,B,D)+

(1−λ1)×probbackoff2(A,B,D)

whereprobbacko f f2 is in turn defined as:

probbackoff2(A,B,D) =

λ2×prob1pos(A,B,D)+

(1−λ2)×prob2pos(A,B,Direction)

where:

λ1 =
cnt(co(A,B))

cnt(co(A,B))+1

λ2 =
cnt(co(Apos,B))+cnt(co(A,Bpos))

cnt(co(Apos,B))+cnt(co(A,Bpos))+1

01 add all vertices into RemainingNodes
02 BestEdges.store(root,〈null,root〉)
03 loop while BestEdges not empty
04 currentEdge =maxe (weight(e) : e∃ BestEdges)
05 BestEdges.remove(currentEdge)
06 RemainingNodes.remove(modifier(currentEdge))
07 addEdgeToTree(currentEdge)
08 ∀ E=〈 modifier(e), v〉 : v in RemainingNodes
09 Ebest = BestEdges.retrieve(v)
10 if weight(Ebest) < weight(E)
11 BestEdges.store(modifier(E), E)

Figure 2: Prim’s algorithm for Generating Depen-
dency Trees

3.1 Using Prim’s Algorithm

Ultimately, what we want is a dependency tree
that contains all the nodes in the graph. However,
there are numerous trees that might possibly pro-
vide such an appropriate structure. One method of
defining an optimum tree is to score trees based
on some function of the weights of its component
edges and then rank them to choose the best one.

Finding a spanning tree that is maximal in the
sum of its edge weights is a well studied problem
in the general area of graph theory. One such so-
lution is Prim’s algorithm, which finds the exact
solution by consecutively adding the best possi-
ble edge until all words are part of the tree. This
should provide a projective dependency tree in
which none of the dependency edges cross given
the word sequence yield of the tree.

Our initial version of Prim’s algorithm for find-
ing optimal dependency trees is presented in Fig-
ure 2. We now step through the pseudo-code with
a description outlining the intuitions for choosing
this algorithm.

3.1.1 Intuitions Underlying the Algorithm

To begin with, a dummy root token is added to
the spanning tree (line 2). The process starts by
finding edges containing words that are likely to
be the head of the main clause (line 8), namely
those that have been observed in the corpus that
have a relationship with the dummy root. These
will be predominantly verbs. For these words, no
alternative edges connecting them to the tree yet
exist so we store them (line 11).

The best of the root-to-vertex edges is chosen on
the next pass of the loop (line 4) and added to the
spanning tree (line 7). From the newly appended
word (likely to be verb), a larger subset of words
is now reachable. In fact, due to the smoothed de-
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pendency model, all remaining words are consid-
ered as modifiers. That is, most relationships will
have a non-zero weight. If this new edge beats any
previously viewed edge to this word, we keep it
and discard the worst one (line 10, 11). In this last
step, we hope that words which previously had a
tenuous attachment point to the tree, due to an im-
probable dependency relation, will now find a bet-
ter head word to attach to.

Note that, when examining new edges in line 8,
we consider dependencies in a leftward direction
as separate from rightward relations. If both exist,
then both are compared in line 10. In the end, only
one alternative is kept depending on the strength
of its weight.

The process loops until all nodes have been
added to the spanning tree.

3.1.2 Hard Constraints

To complete the story, we used two additional
heuristic filters which impose hard constraints on
the tree structure. For simplicity, these are not
listed in Figure 2. Because of our smoothing
method, it is possible for words that are not verbs
to end up attaching the root token. Since this is
almost never the case, in this step we only consid-
ered words whose part-of-speech is ‘verb’ for this
position.

The second constraint disallows a noun from
modifying another noun. This rather brutal fil-
ter is an artifact of our experimental scenario in
which nouns often represent full phrases. Adjoin-
ing a noun phrase to another can make the result-
ing string ungrammatical in this context.

4 Accounting for Argument Counts

Unfortunately, in the context of statistical gener-
ation, a maximal spanning tree isn’t necessarily a
well-formed dependency tree. The model of de-
pendency relations and the search strategy based
on Prim’s algorithm treat dependency triples as in-
dependent events. However, this is not the case.
One simple way in which the events are clearly
not independent is that words have a minimum and
maximum number of permissible modifying argu-
ments as dictated by their grammatical category.

For example, prepositions generally take one
and only one modifier in which the modifier points
leftwards to the preposition. Similarly, a main
clausal verb usually requires a subject as a mini-
mum but could take on any number of additional
arguments including, for example, a potentially

endless list of adverbs. Resulting trees could thus
have words missing arguments and words with too
many arguments.

4.1 Argument Count Error Cases

We analysed the algorithm with several examples
to see how such errors were being made. Three er-
ror cases were identified, which we have dubbed:
Theft of a Good Argument; the Greediness Prob-
lem; and A Shortage of Words.

4.1.1 Theft of a Good Argument

In this particular case, the algorithm dictates
that the newly attached node in the spanning tree
should offer an attachment point to each of the re-
maining unattached nodes. Consider the case in
Figure 3. The nodeworda might well be the only
possible subject noun left for the verb. However,
it may be the case that:

prob(wordb,worda,D) > prob(verb,worda,Left)

in which case, the nodewordb will steal away the
much needed subject argument (line 10). In gen-
eral, a word may be the last remaining possible ar-
gument filler for an obligatory argument slot of a
parent word. As we have already considered edges
leaving the original parent word at the time of its
attachment to the tree, no further potential argu-
ment fillers will be examined. Thus, once stolen
from, there may be no chance to fill obligatory ar-
gument slots.

4.1.2 The Greediness Problem

Figure 3 indicates that the nodewordb now has
two nodes that could potentially attach to it. These
may be the final attachments made to the spanning
tree if they are the last two remaining nodes. How-
ever, ifwordb were in fact a word with limited ar-
gument slots, such as a preposition, it would now
be over-saturated, which will ultimately result in
an ill-formed dependency tree. In general, this
may occur at any level of the tree if we greedily
attach arguments to inner nodes.

4.1.3 A Shortage of Words

Conversely, some nodes may end up with in-
sufficient arguments. This could happen at an in-
ner node higher up in the tree if its arguments are
stolen. It could also happen at the leaf level. If the
last node to be attached to the spanning tree should
have been an inner node, there will be no more
words left to fill its argument slots. This might
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verb

worda wordb

worda′ wordc

Figure 3: Argument error cases.worda′ is ‘stolen’
node

happen if, for example, a preposition was the last
word to be attached and it was not part of some
phrasal verb.

4.2 A Model of Argument Counts

The model of argument counts and its usage in our
modification of Prim’s algorithm is designed to ad-
dress the first two error cases. The third is left to
future work since we cannot backtrack with this
search algorithm. The model simply keeps track of
the number of times a given wordW hasn mod-
ifiers, again accounting for leftward or rightward
directions.

Given a wordW, and an argument countn in the
directionD, its probability is defined as:

probarg(W,n,D) =
cntarg(W,n,D)

cnt(W)

We can compute a model that backs off to part-of-
speech in an analogous way to the model defined
for dependency relations.

probargbackoff(W,n,D) =

λ × (probarg(W,n,D))

+(1−λ )× (probarg(Wpos,n,D))

Again, lambda is defined in terms of the denomi-
natorcnt(W) :

λ =
cnt(W)

cnt(W)+1

4.3 Modifications to Prim’s Algorithm

In our approach based on Prim’s algorithm, attach-
ment is final and thus only methods that attempt to
prevent construction of an ill-formed tree are pos-
sible. That is, tree repair is not currently a part of
our algorithm.

Given that Prim’s algorithm does not allow
backtracking, we have to re-weight edges using
the model for argument counts during the search
to avoid potential traps that would lead to an er-
ror case. Specifically, the argument count model

is used in two places. Updating the priority queue
to account for changing status in argument satura-
tion attempts to combat the Greediness Problem.
In choosing the best edge to keep, we can also
avoid Thefts of a Good Argument.

Note that such a scheme would affect the edge
weights dynamically as the search progressed.
Since we rescore edge weights during search, they
are obviously not fixed before the search begins,
and thus Prim’s algorithm is no longer guaranteed
to produce the globally optimal solution.

4.3.1 Rescoring the Priority Queue

Recall that the BestEdges priority queue is
checked at the beginning of the main loop of the
algorithm to choose the next word to attach to the
spanning tree. To avoid over-saturating a node, we
adjust the ‘attractiveness’ of a dependency relation
if its head word has peaked in terms of its optimum
valency, possibly due to previous attachments.

To do so, we keep track of an argument count
per word. When a modifier is added to the tree, the
argument count for the head word is incremented
by one. All remaining edges in the priority queue
that attach to that head word must then be adjusted
to account for this increment.

Re-weighting edges in BestEdge is computed as
follows:

probadjust(H,M,D) =

probargbackoff(H,n+1,D)×prob(H,M,D)

where n is the number of current children in direc-
tion D that the headH has in the spanning tree.

Typically, after the optimum number of edges
for a word, additional edges are less probable or in
fact ungrammatical, and the edge will correspond-
ingly be adjusted to receive a lowered score. Once
edges have been adjusted and the queue is sorted,
the best edge is chosen and its modifier is attached
to the spanning tree.

An additional advantage to re-weighting an
edge in the priority queue is that it allows that edge
to be more readily replaced with one that attaches
the modifier to a head that still has available argu-
ment slots.

4.3.2 Choosing the Best Edge

When comparing alternative attachment points
(line 8), we must choose between two compet-
ing parent nodes offering attachment points to the
modifier in question. At the time of this compar-
ison, argument thefts can also be avoided if we
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consider how many argument fillers the old parent
still has. These are edges in the BestEdges priority
queue that attach to the parent.

A new competing edge (with headH and mod-
ifier M) is re-weighted and given a lower weight
if it would lead to a Theft of a Good Argument
condition. The priority queue BestEdges storesP,
the best attachment parent node seen so far for the
modifierM. We must identify the potential for the
valency of the old parent node,P, to be satisfied if
M were stolen from it. Furthermore, the direction
of its relationship, leftward and rightward, must
also be accounted for such that there is a satisfac-
tion score for each of these directions.

To do so, we find all edges in BestEdges with
P as a head. These are divided into leftward and
rightward sets,L andR. We first define the ‘po-
tential’ for P to be satisfied. This is simply the
arithmetic mean of the probabilities thatW has 0
to m children, wherem is either the size ofL or R
minus 1 respectively.

probsatisfied(W,m,D) =

∑m
i=0probargbackoff(W, i,D)

m

This allows us to re-weight the new competing
edge (with head wordH and modifierM in direc-
tion D) as:

probre-weight(H,M,D) =

probsatisfied(H,n,D)×prob(H,M,D)

We then continue the comparison at line 10 with
this re-weighted edge. Thus, if an old parent will
not be satisfied after the modifier is stolen, then
the new edge is penalised. If the parent node may
still be satisfied, then the new edge is not disad-
vantaged.

5 Generating a Word Sequence

Once the tree has been generated, all that remains
is to obtain the ordering of words based upon it.
Because dependency relations in the tree are ei-
ther of leftward or rightward direction, it becomes
relatively trivial to order child nodes with respect
to the parent. The only difficulty lies in finding
a relative ordering for the leftward children, and
similarly for the rightward children.

We propose two alternatives for finding the rel-
ative ordering of sibling nodes. The first is based
on the strength of the dependency relation. This

method sorts sibling nodes in descending order
based on the final weight of the dependency re-
lation as it was added to the tree. That is, the
child node with the strongest dependency relation
is placed closest to the parent node. For example,
for leftward siblings, the relation with the highest
edge comes just after (on the right of) the parent
node. We will refer to this as aRelation-based Or-
dering.

The second method uses ann-gram language
model to score word sequences between the
strings yield of each sibling node. A greedy algo-
rithm is used to determine the order of the phrases.
For the set of rightward relations, the algorithm
chooses the best word or phrase to follow a start-
of-sentence marker based onn-gram probabili-
ties. Once the best phrase is chosen to follow the
start-of-sentence token, it then becomes the new
point of comparison. Of the remaining phrases
and words, we select the one that has the bestn-
gram probability following the most recently cho-
sen phrase (or word). This continues until all input
elements are consumed.

Where possible, an overlap window of size six
(2n−2) is examined, split at the point of the con-
catenation of the two phrases. That is, the last
three words of the left phrase and the first three
words of the right phrase. The probability of the
concatenation is simply the probability of this sub-
string which is in turn the product of the probabil-
ities of four-grams within that substring. We will
refer to this as aN-Gram Ordering.

Similarly, for the leftward relations, we use the
greedy generation algorithm. However, instead of
using the start-of-sentence marker, we begin with
the phrase that realises the head node.

6 Evaluation

6.1 Task

In planning our evaluation, we sought to choose a
task for which issues in content selection could be
temporarily put on hold while we instead focused
on appraising our approach for finding a grammat-
ical ordering of input words and phrases. Thus, we
simplified our task to that of ordering words and
phrases from a single sentence.

As a surrogate measurement of grammaticality,
we tested to see if we could regenerate the origi-
nal string. In this task, manually delimited noun
phrases and other words from a sentence are pro-
vided out-of-order as input to the generation mod-
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ule. The aim is to see how much of the original
sentence can be regenerated. This can be mea-
sured by any string comparison method. In our
case, we used the Bleu metric (Papineni et al.,
2002).

This is actually an overly strict evaluation. A set
of input words and phrases could have more than
one grammatical ordering. If we were to generate
one of the alternative orderings, our score would
be adversely affected.

6.2 Training and Data

As we needed an annotated corpus of dependency
relations, we used the Wall Street Journal portion
of the Penn Treebank to obtain our dependency
related frequencies. Dependencies were sourced
from the events file of the Collins parser package
which is in turn a compilation of the dependency
events found in training sections 2-22 of the cor-
pus. Development was done on section 00 and
testing was performed on section 23.

A four-gram language model was also obtained
from the same training data. In both baselines and
in our system, we smooth the data using Katz’s
method which backs off to smaller sizedn-grams.

As input, we used the tagged version of the WSJ
sections which includes not only part-of-speech
tags for each word but also delimitations on the
base noun phrases, that is, noun phrases without
nested constituents. We assumed that the last word
of a base noun phrase is the head word of that
phrase. Thus our input set of strings per sentence
were the heads of base noun phrases and interven-
ing single words.

6.3 Baselines

We decided to compare our system with two base-
lines. The first is the greedyn-gram ordering al-
gorithm used to order rightward siblings in the de-
pendency tree. Again, a start-of-sentence token is
used and where possible a maximum overlap win-
dow of size six is used. As input, this baseline is
given the same set of base noun phrases and words
as our system. Noun phrases are not reduced to a
single head word for this baseline generator. Thus,
it too will receive the same benefits of word over-
lap due to a re-use of noun phrases. Note that this
algorithm simply orders the input based on a lan-
guage model and makes no use of tree structure.

When concatenating pairs of single tokens, the
first baseline is disadvantaged because the maxi-
mum overlap window is limited to just a bigram.

System Bleu

Tree 0.296
Tree+N-Grams 0.307
Tree+Arg 0.300
Greedy baseline 0.279
Viterbi baseline 0.107

Figure 4: Bleu scores

To account for this, we search with a full four-
gram model over single tokens using a Viterbi-like
algorithm with a beam of 100. As input, base noun
phrases are also broken up into component words.
Thus, this baseline tries to regenerate the test sen-
tence based only on individual tokens, and does so
without knowledge of noun phrase boundaries.

6.4 Results

We obtained favourable results, which indicate
that an approach that orders words by first try-
ing to build a dependency tree does produce more
fluent text, as measured by Bleu. We present the
Bleu scores in Table 4. The system named ‘Tree’
uses the simple version of Prim’s algorithm pre-
sented in Figure 2 where sibling nodes are or-
dered based on the strength of their relations. The
‘Tree+N-Gram’ system differs only in that a lan-
guage model and the greedyn-gramordering algo-
rithm are used to order siblings. The ‘Tree+Arg’
system uses the modifications for handling argu-
ment counts on top of the ‘Tree+N-Gram’ system.

Using the sign test and the sampling method as
outlined in Collins et al. (2005), we tested for sta-
tistical significance. All differences are significant
at p < 0.01 except between the variations of our
systems. Although usingn-grams to order sibling
nodes obtained a slightly higher score, the lack of
significance might be attributable to the fact that
the dependency structure is responsible for most of
the improvements in Bleu score and that the lan-
guage model, when used in this manner, does not
add much. Thus, in hindsight, it makes sense that
we are less able to observe the effects of using the
language model.

It also helps to examine the text that is actually
generated by each system. In Figure 5, we present
examples of typical generation cases for both the
Tree+Arg system and the Greedy baseline.
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Tree+Arg: a developer of mr. shidler ’s company specializes
in l.j. hooker and mr. simpson claims is in to have $ 1 billion
a former senior executive commercial real-estate investment
and assets

Greedy: in of is to have $ 1 billion in a former senior
executive and commercial real-estate investment and claims
assets a developer l.j. hooker specializes mr. simpson ; mr.
shidler ’s company

Original Sentence: mr. shidler ’s company specializes in
commercial real-estate investment and claims to have $1 bil-
lion in assets; mr. simpson is a developer and a former senior
executive of l.j.hooker

Figure 5: Example generated sentences

6.5 Discussion and Future Work

Overall, we observed an improvement in the de-
gree of string regeneration which we interpret as
an improved ability on the part of our system to
generate grammatical strings.

It is worth reflecting on the limitations of our
approach both when the process operates as in-
tended as well as when it performs poorly. By us-
ing corpus based dependency probabilities, we are
biasing the system to recreate the semantic con-
tent of the corpus, insofar as our dependency rep-
resentations are capable of capturing such infor-
mation. Thus, in the evaluation, if the unseen test
sentence which we want to regenerate should dif-
fer drastically in semantics from previously seen
data, it will be difficult to recreate this sentence,
even if the algorithm otherwise works as intended.
For example, if a noun phrase that was always
seen in the object position is suddenly in sub-
ject position in the test sentence, we will have lit-
tle chance of regenerating the complete sentence.
However, both our approach and ourn-gram gen-
eration baselines would suffer from this.

Since we almost never recreate the original sen-
tence completely, it is clear that our algorithm can
still be improved. Considering the bigger pic-
ture, we have in effect shoe-horned Prim’s algo-
rithm into serving as an algorithm for finding an
optimum dependency tree. As already discussed,
dynamically weighting edges to account for sat-
isfaction of argument counts results in the prob-
lem becoming more complex. Our modifications
to handle argument counts seem still to be insuffi-
cient overall to avoid invalid dependency trees be-
ing considered.

Disappointingly, our modifications for handling
argument counts seemed to have only a slight ef-

fect. One key limitation in the approach is the lack
of a backtracking facility in the search algorithm.
As noted above, at any given point in the search,
what might have been the best edge to some node
may suddenly become obsolete as a consequence
of adding some other node to the tree. One option
would be to keep ann-best list of edges instead
of using a max function. We are currently work-
ing on such modifications to test for any improve-
ments. It should be noted, however, that keeping
ann-best list increases the complexity. We are also
working to improve our model of argument counts
further.

In our evaluation, noun phrases were conve-
niently delimited in the WSJ corpus. We intend
to explore methods to either automatically de-
limit noun phrases or else to generate them from
scratch. Finally, our evaluation in this paper fo-
cused only on string regeneration and used Bleu
as a metric. We will also examine other metrics,
such as the one proposed in Mutton et al. (2007),
which evaluates the grammaticality of novel sen-
tences. Additionally, we hope to evaluate our work
in the context of the original task of global revision
in abstract-like summarisation.

7 Conclusion

In this paper, we presented a mechanism for gen-
erating a novel sentence from a predetermined set
of words. We argued that such a mechanism may
be used for performing global revision as part of a
larger text-to-text generation system for producing
abstract-like summaries. Our approach employed
a variation of Prim’s algorithm to construct a de-
pendency tree to be used in conjunction with a lan-
guage model for ordering a set of words. The con-
struction of the tree was performed using a sta-
tistical model of dependency relations. Our hope
was that a language model would improve word
order at the local level, whilst a syntactic model
would enforce a valid grammatical structure at the
global level. We observed a significant gain in per-
formance over our baseline in a string regenera-
tion task, attaining an system Bleu score of .307.
We conclude that an approach that combines both
syntactic andn-gram information can benefit from
both types of information.
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