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Abstract

Pairing structuraldescriptionsin MT, syntax-semanticsinterfacesandso on becomesmoredifficult the more

structurallydifferent are the languagesinvolved; thereis, implicitly or explicitly, a processof ‘tree parsing’,

wherea structuraldescriptionis split into componentsmallertreesfor transferrulesto beapplied.Recentwork

haslooked at theconstructionof transferrules,usingboth symbolicandstatisticalapproaches,that requirethe

pairingof groupsof several contiguous nodesin structuraldescriptions.We look at the casewherepairingsof

groupsof non-contiguousnodesarenecessary, andpresentanefficient dynamicprogrammingalgorithmbased

on TAG anddrawing on compilertheoryfor a decompositioninto appropriategroupings. We thenexaminethe

formalpropertiesof thisalgorithm,andshow thatit is linearin thenumberof nodesin thetreeandhasthesame

complexity asexisting algorithmsrequiringonly groupingsof contiguousnodes.

1 Introduction

Therearemany situationsin which it is necessaryto relate two setsof structures:machinetranslation,
paraphrase, mapping between syntax andsemantics,andsoon.Oftenthesearetrees, andoften struc-
tural divergences aresignificant. Dorr (1994) presentsa classification of divergencesin MT, including
thestructural,andusestheextentof thedivergencesto argue for anexplicit semantic representation.

Becauseof structuraldifferences,it is necessaryto usesometransformationoperation in thepairing
of the trees. In somecasesthis is dealtwith in an ad hoc manner, although thereareseveral differ-
ent modelsfor dealing algorithmically with thesestructural differencesthat have beenproposed.For
example, in the structure-pairing formalism based on context-free derivationsproposedfor MT by
Wu (1997), re-ordering of righthandsides in context-free grammarrules is allowed in order to rep-
resent differencesin structure; more recently, Eisner(2003) hasuseda model of SynchronousTree
Substitution Grammars(S-TSGs)asthebasis for astochastic mapping induction system.Broadly, this
takes a group of nodesin eachtreeandtreatsthemasa single unit in orderto beableto pair treesof
differentstructure.

Abeillé et al. (1990), in presentingSynchronousTreeAdjoining Grammar(S-TAG) asa formalism
for representing MT, notethat theextentof thedivergencesandconsequent restructuring will depend
on theformalism chosen: with a formalism suchasS-TAG, with its extendeddomain of locality which
incorporatespredicate–argumentstructure into the elementary units of the grammar, thereare fewer
divergences.Evenwith this minimisation of divergencethroughchoice of representation, it is not the
casethat the structuresto paired are isomorphic: the redefinition of S-TAG in Shieber (1994) which
requiresisomorphic(i.e.node-to-node)derivationsis extendedin thatpaper to includealsothepairing
of groups of nodesin trees.
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Figure1: Pairednon-isomorphic structures,with transfer rule

Currentmodelsof tree transformation, however, allow only the grouping of contiguous nodes for
thepurposeof pairing, andtherearesituationswheregroupingsof non-contiguousnodes—but not just
any arbitrary groupsof non-contiguousnodes—arerequired.‘Parsing’a treewith agrammarbasedon
someformalism other thanCFGsor TSGswill thenpermit the mappingof suchgroupings; this can
be viewed asapplying to the treea meta-level grammaralongthe lines of Dras(1999). For casesof
parsing treeswith groupingsof contiguous nodes,therearestandard efficient algorithms in compiler
theory; however, these do not exist for pairing of groupingsof non-contiguousnodes,andthis would
at first glance appear to require morepowerful andslowermechanisms.

In thispaperweuseTreeAdjoiningGrammarastheformalism for capturing non-contiguousgroup-
ings of nodesrequired by pairings; it haspropertiesthat, given certain conditions, allow an efficient
treeparsing algorithm. In Section2 we examine someexamplesof the types of groupings required;
in Section3 we give a brief overviewof TAG; andin Section4, we present a dynamic programming
algorithm that allows treemappings with groupingsof non-contiguous nodes, which is linear in the
number of nodes in the treeandhence asefficient asthat for the contiguous case,followed by some
discussionof moregeneral questionsrelatedto thenotion of treeparsing.

2 Pairing Structural Descriptions

The aim of this work is to decomposetreesinto groupingsof non-contiguousnodesthat have been
identified asbeingin a correspondencefor a transfer-basedtranslation.Thestarting point for thepro-
cessis thusa treeassignedindependently asthe input to thetransfer, typically by a parser; whetherit
is a dependency tree,TAG derivationtree,or other, is immaterial.

First, we will definemoreprecisely what we meanby groupingsof contiguous nodes(gCNs)and
groupingsof non-contiguous nodes(gNCNs).Taking nodes in a treeto be representedby Gorn ad-
dresses,1 a gCN

�
is a setof nodessuch that if two nodes with addresses�������
	 arein

�
, andthey

have largestcommonprefix ��� , thenall nodes with address�� such that ��� is a prefix of �� and �� is a
prefix of ��� or �
	 mustbein

�
. A gNCNis any setof nodesin a treethat is not a gCN.

In this section we will illustratesomeof the situations wherepairing of gNCNsis required. As an
exampleof thestandardcase of groupingsof gCNs,we give pair (1) from Korean-EnglishMT.

(1) pang-un
room–TOP

cak-ayo
be-small–DECL

Theroomis small.
For predicativeadjectives,English usescopulabe plustheadjective,while Koreanusesonly averb-

like lexical item.Embedding theadjectival constructionsfrom (1) within a largercontext, pairedstruc-
1TheGornaddressof theroot is � ; theGornaddressof the � th child of nodewith address� is ��� � , ������� . For ��� �!�"���$# ,� is a PREFIX of � if andonly if thereexistsan %&�"� �'# suchthat ��()�*�+% .
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turesmight look like the lefthandsideof Figure1.2 Here,we would needto treatthenodes for is and
small asasingleunit in orderto pair it with cakayo, sothegroupingof thenodesfor is andsmall would
bedesignateda gCN.If therewerea needto group is, small and . , this would bea gNCN.

Paired TAGs In pairingtwo TAGsfor MT, syntax-semanticsmapping or paraphrase, undertheredef-
initi on of SynchronousTAG in Shieber (1994) there mustbeanisomorphismbetweenthederivations
of two stringsto be paired. In TAG, for each DERIVED TREE derived from smallerelementary trees,
thereis a corresponding DERIVATION TREE which describesthehistory of thederivation. This deriva-
tion treehasa number of similarities to dependency trees,but is not exactly the same(Rambow and
Joshi, 1997). In general there will not beanisomorphismbetweentwo suchtreesfor any of theabove
applications,henceShieber’sproposedextension to allow “boundedsubderivation” (whichcorrespond
to gCNsin thecontext of derivation trees).However, healsonotesthepossibilit y, further explored in
DrasandBleam(2000), thatthepairing of gNCNswill benecessary. An exampletakenfrom thelatter
is in (2).

(2) El
The

médico
doctor

le
him–DAT

quiero
wants

poder
to-be-able

. . . examinar

. . . to-examine
los
the

dientes.
teeth.

Thedoctor wantsto beable. . . to examinehis teeth.

In this Spanish-English example,the clit ic canclimb over an unlimited number of ‘trigger verbs’
(AissenandPerlmutter, 1976) (indicatedby theellipsesin theexample), andfor certainTAG grammars
this cancorrespond to a pair of derivation treesasin Figure2. In this pair of trees,his corresponds to
both los and the clitic le. Both his and los are fixed in relation to the root of the tree,but le is an
unbounded distancefrom it, so it is not possible to form a gCN in theSpanishtreefor pairing without
theunboundedandunrelatedrecursively-insertedverbs,hencerequiring infinitely many transferrules.

Paired dependency trees The system of Hanet al. (2000) pairs two dependency trees basedon a
DeepSyntactic Structure (DSyntS)of MeaningText Theory(MTT) (Mel’ čuk, 1988), a dependency
representation composed of nodeslabeled by lexemesthat correspond to meaning-bearing words
(nouns, verbs,adjectives,adverbs) anddirected arcswith dependency relation labels. Transferrules
arealsorepresented by DSyntStrees,with variables.3 Thegoal of this particulardependency represen-
tation is to minimise‘spurious’ structuraldivergences,suchaswhena preposition in onelanguageis

2Weusetheromanizationof Hanet al. (2000), for consistency with our laterexample.
3The subjectis labeledas‘I’, the direct objectas‘II’, the indirect objectas‘III’, andotherobliqueargumentsas‘IV’;

adjunctsarelabeledas‘ATTR’. Functionwordssuchasdeterminers,semanticallyemptyauxiliary verbsandgrammatical
morphology arerepresentedthroughfeatureson thenodelabels.
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represented by a verbal inflection in the other. However, somedivergencesstill occur, asin (1). The
transfer rule thenrequires that the two nodesis andsmall pair with thesinglenodecakayo: a transfer
rule for Figure1, treating themasa gCN,would beasin the righthandside of thatfigure.4 However,
thereareconstructionswhich cannot behandledin such a way. Consider thetranslationpair in (3).

(3) Mary-ka
Mary–NOM

John-i
John–NOM

nwukwu-lul
who–ACC

cohaha-n-tako
like–PRES–COMP

malha-yess-ni?
say–PAST–Q

Who did Mary saythatJohn likes /� ?
Syntactically, who is dependenton the matrix clause verb,did in English,while semantically it is

an argumentof the subordinate verb likes, a caseof long distranceextraction (seeFigure3). In the
DSyntS,did becomespart of say asa feature on the say node.Further, who is dependenton say and
canonly belabeledasATTRsinceit is notanargumentof say. In theKoreanhowever, nwukwu (‘who’ )
is still an object of cohaha (‘lik e’) with its dependency arc labeled asII. So,a transfer rule covering
long distanceextractedwho would needto include matrix andembedded verbs,asin thelefthandpair
of Figure4. But, becauselong distanceextraction is in principle unbounded, wewould needto specify
all the possible cases, giving an infinite number of transfer rules. Moreover, in the English DSyntS,
thereis noway to representthefactthatwho is asemantic argumentof likes, unlessadditional features
areusedto tracktheir relation.

Again, the key element in this problem is that nodes that arecontiguous in the English tree (say,
who) arenot contiguous in thecorresponding Koreantree(malha, nwukwu); this, along with theTAG
example, canbeseenasa case of interveningmaterialbreaking whatshould becontiguous.

It canof coursebearguedthatanalternativerepresentationwouldbemoreappropriatefor MT, where
who dependsfrom likes in thetree.Wehaveused thesystemof Hanet al. (2000) to illustratethis point
becauseit is asystemthathasthegoalof exploring thefeasibilit y of a plug-and-play architecture: that
is, necessarycomponentssuchasa parser areobtained from elsewhere,with a givenoutput structure
that it is necessaryto use. Giventhis,gNCNsarerequired eitherdirectly or indirectly. Thecase of the
direct relation, usingthese structuresasthebasisfor a transfer component,is illustratedalready in the

4$A is a variableslot for anadjective.
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Figure5: Derivation treepair for example(4)

lefthandpair of Figure4; a pairing indirectly involving gNCNswould berequired in transformingthe
syntactic representation into a deeper semantic one(the oneusedin translation), as in the righthand
pair of Figure4. This latter is the sort of relation that may needto be specified, then,in a formalism
with multiple levels, suchasMTT.

In somecases it maybepossible to know which representation will bestructurally themostsuitable
for a particular applicationlike MT anda particularpairing of languages,andto beableto specify for
exampletheparser output representation, or to modify theparser (althoughthis might beundesirable
for reasonsof modularity). However, this is not alwaysthecase,aswe discussin thenext example.

Paraphrase Herewe useanexample,(4), from Dras(1999), whereparaphrasesarerepresentedby
pairing TAG derivationtrees (Figure5). This is againsimilar to thepreviousMT examples:in order to
definea paraphrasewherethe mostembedded clausebecomesa separatesentence,it is necessaryto
form a gNCN(those nodesin bold in Figure5).

(4) Thejacket which collectedthedustwhich coveredthefloor wastweed.

Thejacket which collectedthedustwastweed.Thedustcoveredthefloor.

Here,all othernodescorrespond one-to-onein thetrees,sothegNCNsareclear. Thiswill bethecase
in paraphrasefor many different typesof representation: if thetreeon theleft hasthemostembedded
clauserepresentedby the mostembedded subtree,therewill still be this problem of fixed relation to
the root vs unbounded relation; if the clause orderis represented in the treein reverse, with the most
embeddedclause theoneclosestto theroot, there will bea parallel problem with a paraphrasewhere
theleast embeddednon-matrix clausebecomesaseparatesentence.And unlike thecaseof who above,
which representation is bestis in general only a function of the pairing of the trees, not something
innate to thegrammarwhich generatesanindividualtree.

Thus therearea number of situationsin which gCNsarenot sufficient. Given that gCNscanbe
represented by TreeSubstitution Grammars,asin Eisner(2003), which arein fact TAGs that do not
allow precisely the kind of unboundedphenomenadescribed by TAGs,this would suggestthat using
a TAG grammarto describe thegNCNsin orderto decomposethetreeswould befeasible; andthis is
further aninterestingquestionfor theoreticalreasonsdescribedbelow.

3 TAG Overview

TAG is a grammarformalism based on trees ratherthancontext free rules (Joshi, 1987). Elementary
treesareof two types, initi al treesandauxiliary trees. Auxili ary treeshave a designatedfoot node,
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marked with a *, whoselabel is the sameasthat of the root. In Figure6, > � and > 	 areiniti al trees;? � is anauxiliary tree. Thetreesarecombined togetherby two operations,substitutionandadjunction.
Undersubstitution, a nodemarked for substitution5 in a tree @ is replacedby an initial treewith the
samelabel at the root; under adjunction, an internal node in a tree @ is ‘split apart’, replacedby an
auxiliary treewith the samelabel at the root and foot. In the DERIVED TREE for the string ACB<DEB<DFA ,
in Figure6, copies of

? � have beenadjoinedeither at the root nodelabelled G of other nodes
? � or

ultimately at the G nodeof >�� ; an >H	 treehasbeen substituted into each
? � treeat thenode labelled. . The derivation history is recorded in the DERIVATION TREE (Figure 6). It can be seenthat the

TAG property of an ‘extendeddomainof locality’ canallow the two A s in the generatedstring to be
separatedby an abitrary amountof interveningmaterial; this characteristic is usedfor representation
of, for example,WH- phenomenawhenTAG derivedtreesareusedfor a linguistic representation. Of
moreinterestfor usthan thederivedstring is thenatureof thederivedtree:thebranchescontaining theA nodes in thederivedtreearealsoseparatedby anarbitary distance.

In general, for linguistic representation it is thederivedtreethat is used astheprimary structureof
representation, sothelabels A � D � B wouldrepresentwordsin atypical lexicalisedgrammarandthetrees>2� , >2	 and

? � would representargumentstructureof thesewords. However, wewill useaTAG gram-
marasa way of characterising othersortsof trees,suchasTAG derivation treesor dependency trees;
this is thus in a senseanextension of thenotion of themeta-level grammarof Dras(1999). Theideais
thento useaTAG grammarto breakdown sometreerepresentation—which maybeadependency tree,
a TAG derivation tree,6 or other—into component treespossibly representing non-contiguousgroup-
ings. Theaim is not to describeevery decomposition into non-contiguousgroupings,only thosesuch
asthe language-relatedcasespresented in Section2; andtheuseof TAG asrepresentation allows for
thecomplexity results below. We now present analgorithm for thedecomposition in Section4.

4 A Tree Parsing Algorithm

4.1 Pattern Trees and Compilers

The processof breaking down an input abstract syntax tree (AST) into component pattern trees, in
order to generatean instruction set,is a standard onein compilers.Thestandardtechniqueinvolvesa
bottom-uprewriting system(BURS),with theoptimal instruction setconstructedby thedynamic pro-
grammingalgorithm of Proebsting (1995); seefor exampleGruneet al. (2000). Because of thenature

5Substitutionsitesareconventionally markedwith I .
6Notethat in MT basedon TAG, it is derivation treesthatarepairedfor transfer, ratherthanderived trees,andit is this

derivationtreethatmustbedecomposed;thatis, theprocessof decomposition is not justaside-effectof theparsingto obtain
the initial derived treerepresentation.Rather, it canbe thought of asa TAG grammarsitting on anotherTAG grammar, a
meta-level grammarin thesenseof Dras(1999).
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of programminglanguages,thesortof patterntreesthatareallowedareonly groupings of contiguous
nodes; in effect, treeparsing is allowed with a treegrammarconsisting of trees of possibly multiple
levelsandallowing only concatenation: this is equivalentto a TSG.Consider anAST in Figure7 (ig-
noringtheannotationsonthenodes,in parentheses); andtakefor pattern treesonly thoseinitial treesof
Figure7 ( > ���<r<r<rs� >!t ). It canbeseenthattheAST canbedecomposedin severalways,for exampleby
thesetof patterntreesu >�	 � >2v � >!v � >$w�x or theset u >*	 � >2v � > t x . If thenumbersin parenthesesafterthe
labels ( y B ) areconsidered ascosts,anoptimaldecompositioncanbedetermined(here,u > 	z� > v{� >!t�x ).

Now in Section4.2 we develop an algorithm basedon this which allows an input AST (for us,a
derivationor dependency structure,for example) to bebroken into componentnon-contiguous‘trees’
efficiently. Froma theoretical point of view this is interesting, asthe expectation would be that some
morecomplex mechanismwouldbenecessary, in muchthesamewaythatallowing stretchingof paired
charactersin strings(say, in thelanguageof nested strings u AZ|CD�|~}Z������x , wherethe � th A is matched
with the � ��� �H����� th D ) cannot be performedby a finite stateautomaton but requiresa pushdown
automatonthroughtheaddition of astack; here,it mightbeexpectedthatastackis similarly necessary
to keeptrackof theunboundedelements.

4.2 Generalizing to Restricted Non-Contiguity

As a first step, we consideronly caseswhereat any nodeduring thetreetraversal in theBURS, there
is only potentially onegNCN at a time: that is, it is not possible to embedor overlapthese gNCNs.In
order to explain this,considerfirst theexamplebelow. Theinput AST (ignoring theannotationson the
nodes) is in Figure7; pattern trees,in theform of aTAG grammar(with associated costsstill indicated
by y B ), arealsoin Figure7. Thealgorithm we usefor bottom-up patternmatching, adaptedfrom that
of Gruneet al. (2000), is in Figure8.

For explanatory purposes,we first look at the bottom up pattern matching aspect of the algorithm.
First, we notionally split the pattern treesinto a setof single-level trees,the SPLIT TREE SET, given
labels basedon Gorn address.So, for example, > � is considered astwo trees, > � (for the top half)
and > �{r�� (for thebottom).Further, eachnodein these trees is givenatype, indicatingwhich others
it can join with. This canbe a single value for treesthat wereoriginally split (so the G node in the
split would have the type > �{r�� ), or oneof four values sub, adj, both, none. For leavesof split
treesnot markedby single values,nodes labelled with terminals areof typenone, nodesmarked for
substitutionaremarkedsub, andfoot nodesaremarkedadj. For rootsof split trees,rootsof auxiliary
treesaremarkedadj, null adjunction nodesmarked sub, andothers markedboth.



PROCEDURE bu-match (Node) FUNCTION matches (tree, annot)
IF Node has non-terminal label IF tree.label = annot.label

bu-match (Node.left) IF tree.type IN annot.label
bu-match (Node.right) OR annot.type = both
SET Node.annot-set TO get-annot-set (Node) OR tree.type = annot.type

ELSE RETURN true
SET Node.annot-set TO { (Node.type = none) } RETURN false

FUNCTION get-annot-set (Node) FUNCTION new-annot (tree, l-annot, r-annot)
SET a-set TO Empty-set IF tree.left.type = adj
FOR EACH tree IN split tree set foot = l-annot

FOR EACH l-annot IN Node.left.annot-set IF tree.right.type = adj
FOR EACH r-annot IN Node.right.annot-set foot = r-annot

IF tree.label = Node.label IF tree.cat = auxiliary
AND matches (tree.left, l-annot) RETURN t + foot
AND matches (tree.right, r-annot) ELSE

Insert new-annot (tree, l-annot, r-annot) into a-set RETURN t
RETURN a-set

Figure8: Bottom-up pattern matching

We thentraversetheAST bottom up,annotating thenodes with those partsof pattern treesthat can
apply, taking into account both labelsandtypes of nodes. (Ignore,at this stage, thecostsindicatedbyy B .) Thelowest G nodeandits immediatechildren A and D could result from theapplication of pattern
tree > w ; equally, it couldbethelowerhalf of trees> � or >2t (i.e. > �{r�� or >2t r�� ). Thenext higher G node
with its children G and D could result from >�v ; or from > t (since the left child G is annotatedwith>2t r�� , indicating thatthesubtreefrom thatpoint containstheremainderof >�t ); or from

? � . Herethere
aretheadditional annotations � > �{r���� and � >Qt r���� : this is because

? � representsmaterialthathassplit> � or >2t into gNCNs(therole of auxiliary treesin TAG), andso > �{r�� and >Qt r�� arepercolatedup the
treeasa record of the lower potential gNCNs.It is necessaryfor this to beattachedto theannotation
of anauxiliary tree, asauxiliary treesaretheonly valid interveningmaterial. At thenext higher G the
samesituation holds. Finally, the root � nodecaneither result from the applicationof > 	 , or of > �
with interposed material (indicatedby theleft child of � having thelabel >s� r�� ).

For the dynamicprogrammingalgorithm, costsare taken into account. In compilers, this value is
relatedto thecostof theinstructionscorresponding to thepatterntree. For this example,thecosts are
not a function of anything external; they do, however, capture the preferenceof larger pattern trees
over combinations of smallertrees, which is desireable; seeEstival et al. (1990). Tracingthrough the
exampleagain, then, this time with costs,at thelowest G nodetheannotation > w hascost3; theother
two annotations >'� r�� and > t r�� , being partial pattern trees,have no cost.At the next higher G node,
the annotations

? ��� > �{r�� and
? ��� >!t r�� have cost3; > v hascost6 (3 for the pattern tree > v , and

3 for the left child asannotatedin the previousstep); >qt hascost 5. As both > alternativesspanthe
samesubtree from this G nodedown, andhave thesamereturn type(sub), it is possibleto discardthe
annotation > v , asit will alwaysbecheaperto use >�t at this point, regardlessof whathappensfurther
up the tree. At the next higher G node,the annotations

? � � >2� r�� and
? � � > t r�� have cost6, and> v hascost8. Finally, at the top � node, > 	 hascost13 (5 for the pattern tree,8 for the left child:

asthepattern treecanonly accept aninitial treeasthe left child, only ><v is a suitablecandidate);but> � hascost 10 (4 for thepatterntree, 6 for the interveningauxiliary trees). Thealgorithm in Figure8
is modifiedso that any annotation in an annotation setwith the sametype but non-minimal cost is
discarded.Thusthederivationof theoptimal treeparse,top-down, would be > � with anadjunction of? � which in turn hasanadjunction of

? � .
By observation, andjust asthestandard algorithm, this extensionis also ��� � � time andspace com-

plexity in thenumberof nodes. This is not surprising, astherestriction on non-embedding of gNCNs
occurs if a TAG grammaris restrictedto thenormalform of Rogers(1994), so that the treesetis rec-
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Figure9: Embedding pattern trees

ognizable: in brief, in this normalform auxiliary treescannot embed,andsothegrammaris in effect
anequivalentbut variantform of CFGwhosesyntax allows a limited degreeof non-local behavior. (In
thegivenexample,it canbeseenthatit is not possible to embedrecursive material, asall theauxiliary
treesareonly of height 1.)

However, despite linear complexity in thenumberof nodes,thework doneandspace usedarepro-
portional to thenumber of patterntrees. A standardtechniqueis to precompileall setsof annotations;
asthereis a finite setof pattern trees, there will bea finite setof annotations—in thecaseof theper-
colatedannotationsattachedto

?
annotations representing gNCNs,this is still true—it is alsopossible

here. Thealgorithm is thenanimplementation of a finite-state treeautomaton.

4.3 A Further Generalization

If embedding is allowed,thealgorithm is morecomplex. Consider theAST in Figure9 andthepattern
treesin Figure9.Startingfrom thelowest G label, theannotationswouldbe > r�� , ? � > r�� , ? � ? r���� > r�� ;
for anAST of arbitrarydepth, theannotation wouldbe

? � ? r�����r<r<rF� ? r���� > r�� . Clearly, afinite-state
treeautomaton is not an appropriate model: it is not possible to precompile the completeannotation
set.

If the pattern tree we want to complete is only the most embedded—thatis, it is not possible to
overlap gNCNs—thiscorresponds to the operation of unrestricted TAG adjoining. That is, from the
example, only the last

? r�� annotation is accessible, so the obviousmodel is a stack. The procedure
is thenan implementation of someform of bottom-up treepushdown automaton (buTPDA) (Schimpf
andGallier, 1985), a treeautomaton augmentedwith a stack, in thesameway a pushdown automaton
(PDA) is a a finite-stateautomaton (FSA)plusa stack.

A standardbuTPDA is not quite theright model.SchimpfandGallier (1985) prove thatTPDAs are
necessaryfor operating on treesetswith context-free path languages.7 But they also prove that the
yield of the class of tree languages acceptedby buTPDAs is the indexed languages.For the nature
of gNCNspresented in this paper, the string languageshould be within the mildly context-sensitive
languages(MCSLs);thusthis typeof TPDA is too powerful.

However, it is possible to restrict the power of a TPDA so that the string languageaccepted by
the automatonis within the MCSLs.A proof is beyond the scope of this paper, but a sketch follows.
TPDAs ascurrently definedallow the stack to be accessibleat any point during the operation of the

7Thepathlanguage for ASTsof theform in Figure9 is �j�{�'#�� which is regular. But it is clearthatthepathlanguage for
thegrammar, �F�{� # �����j��� #�� � #+������� � #�  � #+  � #Q¡ numberof As andBs is equal� , is context-free.



automaton.Thus it is possible for the stack to be accessedon different paths; and so it is possible
for paths to be dependent (e.g.onepath in the tree is G | , another is .¢| ). Grammarsthat generate
MCSLscannot have dependentpaths (Weir, 1988). But if access to the stackis restricted to a single
path—in the samemannerthat restricting stack passing to a single non-terminalchild in an indexed
grammarproducesa linear indexedgrammar(Gazdar, 1988), which generatesMCSLs—thepower of
the TPDA is suitably restricted.The ideais related to the EmbeddedPushdown Automaton(EPDA)
of Vijay-Shanker (1987), although this is of coursea string automatonrather thana treeautomaton.
Regardless of this, it is still not possible to precompile the annotation set, in the sameway a PDA
cannot be compiledout like an FSA; so the algorithm is still ��� � � time andspacecomplexity in the
number of nodes,but is alsoproportional to thesizeof thegrammar.

5 Conclusion

In this paperwehavegivenexamplesof situationsin themapping of treeswhereit is necessaryto pair
groupsof non-contiguousnodes.Wehaveshown how sometypesof non-contiguity canberepresented
formally usingtheideaof agrammarto groupnodesin thetree;andthen,treating thisasasetof pattern
treesin thesenseof a bottom-uprewriting system in compiler theory, we have developedanefficient
algorithm for this treedecomposition. Futurework will involve looking at various practical aspects:
how in theBURScostscanbedetermined,beyond thegeneralnotion of preferring larger patterntrees
over smaller;how bestto representprecompilation of annotationsin theBURSalgorithm; andsoon.
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I. Mel’ čuk. 1988. Dependency syntax: theory and practice. StateUniversityof NY Press.
T. Proebsting.1995.BURSautomatageneration.ACM Trans. Programming Languages and Systems, 17(3):461–486.
O. Rambow andA. Joshi. 1997. A FormalLook at Dependency GrammarsandPhrase-StructureGrammars,with Special

Considerationof Word-OrderPhenomena.In LeoWanner, editor, Current Issues in Meaning-Text Theory. Pinter, London.
J.Rogers.1994.CapturingCFLswith TreeAdjoining Grammars.In Proc. of ACL ’94, pages155–162.
K. SchimpfandJ.Gallier. 1985. Treepushdown automata.J. of Comp. and System Sciences, 30:25–40.
S. Shieber. 1994. Restrictingthe Weak-Generative Capacityof Synchronous TreeAdjoining Grammars.Computational

Intelligence, 10(4).
K. Vijay-Shanker. 1987. A study of tree adjoining grammars. Ph.D. thesis,Departmentof Computerand Information

Science,Universityof Pennsylvania.
D. Weir. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis,Dept. of Comp.and Info.

Science,Univ. of Pennsylvania.
D. Wu. 1997. Stochasticinversiontransductiongrammarsandbilingualparsingof parallelcorpora.Comp. Ling., 23(3):377–

404.


